
566  |  Nature  |  Vol 618  |  15 June 2023

Article

Geometric constraints on human brain 
function

James C. Pang1,7 ✉, Kevin M. Aquino2,3,7, Marianne Oldehinkel4, Peter A. Robinson2, 
Ben D. Fulcher2, Michael Breakspear5,6 & Alex Fornito1

The anatomy of the brain necessarily constrains its function, but precisely how 
remains unclear. The classical and dominant paradigm in neuroscience is that 
neuronal dynamics are driven by interactions between discrete, functionally 
specialized cell populations connected by a complex array of axonal fibres1–3. 
However, predictions from neural field theory, an established mathematical 
framework for modelling large-scale brain activity4–6, suggest that the geometry of 
the brain may represent a more fundamental constraint on dynamics than complex 
interregional connectivity7,8. Here, we confirm these theoretical predictions by 
analysing human magnetic resonance imaging data acquired under spontaneous 
and diverse task-evoked conditions. Specifically, we show that cortical and 
subcortical activity can be parsimoniously understood as resulting from 
excitations of fundamental, resonant modes of the brain’s geometry (that is, its 
shape) rather than from modes of complex interregional connectivity, as 
classically assumed. We then use these geometric modes to show that task-evoked 
activations across over 10,000 brain maps are not confined to focal areas, as widely 
believed, but instead excite brain-wide modes with wavelengths spanning over 
60 mm. Finally, we confirm predictions that the close link between geometry and 
function is explained by a dominant role for wave-like activity, showing that wave 
dynamics can reproduce numerous canonical spatiotemporal properties of 
spontaneous and evoked recordings. Our findings challenge prevailing views and 
identify a previously underappreciated role of geometry in shaping function, as 
predicted by a unifying and physically principled model of brain-wide dynamics.

The dynamics of many natural systems are fundamentally constrained 
by their underlying structure. For instance, the shape of a drum influ-
ences its acoustic properties, the morphology of a river bed shapes 
underwater currents and the geometry of a protein determines the mol-
ecules with which it can interact9. The nervous system is no exception, 
with the rich and complex spatiotemporal dynamics of anatomically 
distributed neuronal populations being supported by their intricate 
web of axonal interconnectivity1,10. Several studies have shown correla-
tions between various properties of brain connectivity and activity11, 
but precisely how spatiotemporal patterns of neural dynamics are 
constrained by a relatively stable neuroanatomical scaffold remains 
unclear.

In diverse areas of physics and engineering, structural constraints 
on system dynamics can be understood via the system’s eigenmodes, 
which are fundamental spatial patterns corresponding to the natural, 
resonant modes of the system12. In the linear regime, such as brain activ-
ity under normal (that is, non-seizure-like) conditions13, eigenmodes 
(hereafter also referred to as modes) offer a particularly powerful and 

rigorous formalism for linking brain anatomy with the physical pro-
cesses that shape activity. Through this lens, spatiotemporal patterns 
of neuronal dynamics emerge from excitations of the brain’s structural 
eigenmodes, much like the harmonics of a plucked violin string arise 
from vibrations of its own resonant modes.

Critically, just as the resonant frequencies of a violin string are deter-
mined by its length, density and tension, the eigenmodes of the brain 
are determined by its structural—physical, geometric and anatomi-
cal—properties. Do any of these specific structural properties make a 
dominant contribution to dynamics? Here we test two influential and 
competing theories that make different predictions about which key 
elements of brain structure shape function.

One classical perspective, which represents the dominant paradigm 
in neuroscience, has its roots in Ramon y Cajal’s neuron doctrine14, Brod-
mann’s cytoarchitectonics15 and over a century of work localizing func-
tions to specific brain regions16. According to this view, spatiotemporal 
patterns of neural dynamics arise from interactions between discrete, 
functionally specialized cell populations connected by a topologically 
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complex array of short- and long-range axonal connections2,3. In humans, 
these connections can be estimated at macroscopic scales by diffusion 
magnetic resonance imaging (dMRI) to yield a structural connectivity 
matrix, called a connectome17. This approach has been used extensively 
to understand brain organization and dynamics2,17,18, and recent work 
has proposed that eigenmodes derived from such a discrete connec-
tome—referred to here as connectome eigenmodes—can be used to 
reconstruct the spatial patterns of canonical functional networks of 
the human cortex mapped with functional MRI (fMRI)19,20.

One limitation of this discrete connectome-based view is that it 
relies on an abstract representation of brain anatomy that does not 
directly account for its physical properties and spatial embedding 
(that is, geometry and topology). These characteristics are explicitly 
incorporated into a broad class of neural field theories (NFTs)4–6 that 
describe mean-field neural dynamics on spatial scales above 0.5 mm 
(Supplementary Information 1). One physiologically constrained form 
of NFT has unified a diverse range of empirical phenomena6,21 by treat-
ing cortical activity as a superposition of travelling waves propagating 
through a physically continuous sheet of neural tissue. In this theory, 
neural interactions between different cortical locations are approxi-
mated by a homogeneous spatial kernel that declines roughly expo-
nentially with distance22, in line with experimental evidence that the 
organization of the nervous systems of numerous species is universally 
governed by an exponential distance rule (EDR) for connectivity10,23,24.

Given wave-like dynamics and EDR-like connectivity, a key prediction 
of NFT is that the intrinsic geometry of the brain physically shapes and 
imposes boundary conditions on emergent dynamics7,8,25. A remark-
able corollary of this view is that, if we prioritize spatial and physical 
constraints on brain anatomy, we only need to consider the shape of the 
brain, and not its full array of topologically complex axonal intercon-
nectivity, to understand spatially patterned activity. More formally, the 
theory predicts that eigenmodes derived from brain geometry—here-
after referred to as geometric eigenmodes—represent a more funda-
mental anatomical constraint on dynamics than the connectome7,8,25. 
This view stands in stark contrast to the classical view that complex 
patterns of interregional anatomical connectivity shape brain activity26.

Here we test these competing views of the brain with the aim of iden-
tifying the principal structural constraints on human brain dynamics. 
In line with theoretical predictions from NFT, we show that diverse 
experimental fMRI data from spontaneous and task-evoked record-
ings in the human neocortex can be explained more parsimoniously 
by eigenmodes derived from cortical geometry (geometric eigen-
modes) than by those obtained from measures of brain connectivity 
(connectome eigenmodes). We further confirm that stimulus-evoked 
activity is dominated by excitations of geometric eigenmodes with 
long spatial wavelengths, challenging classical views that such activity 
is localized to focal, spatially isolated clusters. To directly link these 
structural constraints to the physical processes driving brain dynam-
ics, we use a generative model to show how wave dynamics unfolding 
on the geometry of the cortex can explain diverse features of func-
tional brain organization. Finally, we show that the close relationship 
between geometry and function captured by eigenmodes extends 
to non-neocortical structures, indicating that this link is a universal 
property of brain organization.

Geometric modes constrain cortical activity
We first examine the degree to which geometric eigenmodes can 
explain diverse aspects of human neocortical activity. To derive the 
eigenmodes, we use a mesh representation of a population-averaged 
template of the neocortical surface (Fig. 1a and Derivation of cortical 
geometric eigenmodes in Methods). We then construct the Laplace–
Beltrami operator (LBO) from this surface mesh, which captures local 
vertex-to-vertex spatial relations and curvature, and solve the eigen-
value problem,

ψ ψ λψ∇ = ∆ = − , (1)2

where ∇ is the gradient operator, Δ is the LBO and r rψ ψ ψ= { ( ), ( ), …}1 2  
is the family of geometric eigenmodes with the corresponding family 
of eigenvalues λ λ λ= { , , …}1 2 . The eigenvalues are ordered sequentially 
according to the spatial frequency or wavelength of the spatial patterns 
of each mode (Fig. 1a and Extended Data Fig. 1), such that ψ1 is the mode 
with the longest wavelength. The resulting eigenmodes are orthogonal, 
forming a complete basis set to decompose spatiotemporal dynamics 
unfolding on the cortex as a weighted sum of modes with varying wave-
lengths (Fig. 1b and Modal decomposition of brain activity in Methods). 
Unless otherwise specified, we use N = 200 modes throughout this 
study.

Using this decomposition we evaluate the accuracy of geometric 
eigenmodes in capturing both task-evoked and spontaneous brain 
activity (Fig. 1c) measured in 255 healthy individuals from the Human 
Connectome Project27 (HCP; HCP data in Methods and Supplementary 
Information 2). For task-evoked activity, we map 47 task-based con-
trasts drawn from seven different tasks representing distinct evoked 
activation patterns. We then reconstruct each individual’s activation 
map using an increasing number of modes up to a maximum of 200 
(Fig. 1d). For spontaneous, task-free (so-called resting-state) activ-
ity, we reconstruct the spatial map of activity at each time frame and 
then generate a region-to-region functional coupling (FC) matrix, 
describing correlations of activity among 180 discrete brain regions 
per hemisphere28. To allow direct comparison between task-evoked 
and spontaneous recordings, we apply the same regional parcellation 
to the task-evoked data (Cortical parcellations in Methods). Finally, 
we quantify reconstruction accuracy by calculating the correlation 
between empirical and reconstructed task-evoked activation maps 
and spontaneous FC matrices (Fig. 1d–f).

We observe that reconstruction accuracy increases with an increasing 
number of modes across all task contrasts and in the resting state, with 
r ≥ 0.38 already achieved using just N = 10 modes (Fig. 1d). Large-scale 
modes are also differentially recruited across different tasks, suggest-
ing that particular stimuli excite specific modes (Fig. 1e). Improvements 
in reconstruction accuracy become slow after ten modes, reaching 
r ≥ 0.80 at approximately N = 100 modes, with only incremental 
increases in reconstruction accuracy beyond this point. Beause the first 
100 modes have wavelengths above around 40 mm (Supplementary 
Table 1), and the inclusion of shorter-wavelength modes only refines 
reconstruction of localized patterns (arrowheads in Fig. 1e), our find-
ings suggest that the data are predominantly comprised of spatial 
patterns with long spatial wavelengths (see next section for a more 
detailed analysis).

These results are consistent across all 47 HCP task contrasts (Supple-
mentary Fig. 1) and parcellations of varying resolutions (Supplementary 
Fig. 2), but data parcellated at higher resolution require more modes 
to achieve high reconstruction accuracy due to the low-pass spatial 
filtering effect of coarser parcellations. Our results are also not affected 
by the use of a population-averaged cortical surface template (rather 
than individual-specific surfaces) to derive the geometric eigenmodes 
(Supplementary Figs. 3–5 and Supplementary Information 3). Together 
these findings indicate that cortical geometric eigenmodes form a com-
pact representation that captures diverse aspects of task-evoked and 
spontaneous cortical activity. Moreover, they show that such activity 
is dominated by long-wavelength, large-scale eigenmodes.

We next test the hypothesis that geometric eigenmodes provide a 
more parsimonious and fundamental description of dynamics than 
eigenmodes derived from a graph-based connectome approximation. 
To this end we compare the reconstruction accuracy of geometric 
eigenmodes against three alternative connectome-derived eigenmode 
basis sets (see Fig. 2a for a schematic). The first basis set is derived 
empirically from a connectome mapped with dMRI tractography at 
vertex resolution and thresholded to obtain a connection density of 
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0.10%, as done previously29 (Derivation of connectome eigenmodes in 
Methods). The second basis set is derived from a connectome con-
structed synthetically according to a homogeneous stochastic wiring 
process governed by an exponential distance-dependent connection 
probability to mimic simple, EDR-like connectivity (Derivation of 
EDR eigenmodes in Methods). Because the connection densities of 
empirical and EDR connectomes differed, we evaluated a third basis 
set derived from the empirical connectome thresholded at 1.55% to 
match the density of the EDR connectome. The connectome, EDR and 
density-matched connectome eigenmodes described above are derived 
from the graph Laplacian (a discrete counterpart of the LBO) of their 
respective connectivity matrices (Fig. 2b and Extended Data Fig. 1).

To summarize, geometric eigenmodes account for the intrinsic 
curvature of the cortical surface and local vertex-to-vertex relations 
in the surface mesh; connectome eigenmodes do not consider curva-
ture but capture local spatial relations between mesh vertices, along 
with short- and long-range connections measured with dMRI; and 
EDR eigenmodes account for the effect of a homogeneous, stochas-
tic, distance-dependent connection rule without fully capturing the 
cortical geometry (Fig. 2a). Contrasting these different basis sets thus 
allows us to disentangle the contributions to brain dynamics of cortical 
geometry from structural connectivity.

Direct comparison of the reconstruction accuracy of these different 
basis sets shows that geometric eigenmodes consistently show the 
highest reconstruction accuracy across both spontaneous (Fig. 2c) 
and task-evoked (Fig. 2d) data. EDR eigenmodes perform nearly as well 
as geometric eigenmodes whereas connectome eigenmodes are the 

least accurate. This finding holds true regardless of the parcellation 
used (Extended Data Figs. 2 and 3), the specific connection density 
used to generate the connectome eigenmodes (Supplementary Figs. 6 
and 7 and Supplementary Information 4) and whether we generate the 
connectome using a discrete regional parcellation rather than at vertex 
resolution (Supplementary Fig. 8 and Supplementary Information 4).  
We additionally find that geometric eigenmodes show stronger 
out-of-sample generalization than principal components of the func-
tional data themselves (calculated via principal component analysis 
(PCA); Supplementary Fig. 9, Extended Data Fig. 4 and Supplementary 
Information 5) and better performance than Fourier spatial basis sets 
(Extended Data Fig. 5, Supplementary Information 6 and Comparisons 
with statistical basis sets in Methods).

Taken together, these results demonstrate the parsimony, robust-
ness and generality of geometric eigenmodes as a basis set for brain 
function. They also support the prediction of NFT that brain activity 
is best represented in terms of eigenmodes derived directly from the 
shape of the cortex, thus emphasizing a fundamental role of geometry 
in constraining dynamics.

Long wavelengths dominate cortical activity
Reconstructions of both spontaneous and task-evoked data with geo-
metric eigenmodes show that the spatial organization of brain activity 
is dominated by patterns with spatial wavelengths of about 40 mm or 
longer (Fig. 1d–f). This result counters classical approaches to analy-
sis of neuroimaging data, in which stimulus-evoked activations are 
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Fig. 1 | Reconstruction of neocortical activity with geometric eigenmodes. 
a, Geometric eigenmodes are derived from the cortical surface mesh by solving 
the eigenvalue problem, ψ λψ∆ = −  (equation (1)). The modes ψ ψ ψ ψ, , , …, N1 2 3  
are ordered from low to high spatial frequency (long to short spatial wavelengths). 
Negative, zero and positive values are coloured blue, white and red, respectively. 
b, Modal decomposition of brain activity data. The example shows how a 
spatial map, ry t( , ), at a given time, t, can be decomposed as a sum of modes,  
ψj, weighted by aj. c, Left, we reconstruct task-evoked data using spatial maps 
of activation for a diverse range of stimulus contrasts. Right, we reconstruct 
spontaneous activity by decomposing the spatial map at each time frame and 
generating a region-to-region FC matrix. d, Reconstruction accuracy of seven 

key HCP task-contrast maps (Supplementary Information 2.1) and resting- 
state FC as a function of the number of modes. Insets show cortical surface 
reconstructions, demonstrating the spatial scales relevant to the first 10, 100 
and 200 modes corresponding to spatial wavelengths of approximately 120, 
40 and 30 mm, respectively. e, Group-averaged empirical task-activation maps 
and reconstructions (recon.) obtained using 10, 100 and 200 modes of the 
seven key HCP task contrasts. Black arrowheads indicate localized activation 
patterns that are more accurately reconstructed when using short-wavelength 
modes. f, Group-averaged empirical resting-state FC matrices and 
reconstructions using 10, 100 and 200 modes.
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mapped by thresholding statistical maps to identify focal, isolated areas 
of heightened activity. This classical approach rests on the assumption 
that focal loci represent discrete brain regions putatively engaged 
by the stimulus and that subthreshold activity in other regions is 
of negligible interest. The surprisingly long-wavelength content of 
task-activation data (Fig. 1d–e) suggests that classical procedures focus 
only on the tips of the iceberg and obscure the underlying spatially 
extended and structured patterns of activity evoked by the task (see 
Extended Data Fig. 6 for an explanation of the reasons involved). These 
observations accord with the theoretical predictions of NFT and previ-
ous analyses of task-evoked electroencephalography (EEG) signals30,31.

Here we leverage the modal decomposition described in Fig. 1b 
to characterize the complete spatial pattern—the entire iceberg—
of task-evoked activation. To this end we analyse the spatial power 
spectrum obtained using a geometric mode decomposition of 
group-averaged unthresholded activation maps from the 47 task 
contrasts in HCP27,32 (Modal power spectra of task-evoked activa-
tion maps in Methods). As an independent replication, we also ana-
lyse 10,000 unthresholded activation maps from 1,178 independent 
experiments available in the NeuroVault repository33, thus providing a 
comprehensive picture of the diversity of stimulus-evoked activation 
patterns mapped in the human brain.

Despite the wide range of stimuli, paradigms and data-processing 
approaches used to acquire these activation maps, we observe that a 
large fraction of power in the maps is concentrated in the first 50 modes, 
corresponding to spatial wavelengths greater than around 60 mm 
(Fig. 3a; similar results are found separately for each of the key HCP 
task-contrast maps; Extended Data Fig. 7). Using surrogate data, we con-
firm that these findings cannot be explained by the spatial smoothing 

induced by typical fMRI processing pipelines, which can filter out 
short-wavelength spatial patterns of activity (Extended Data Fig. 8 and 
Supplementary Information 7). We further observe that incremental, 
sequential removal of long-wavelength modes has a much greater 
impact on reconstruction accuracy than removal of short-wavelength 
modes (Fig. 3b and Contributions of long- and short-wavelength 
modes in Methods). For instance, across the seven key HCP task con-
trasts, removal of the top 25% long-wavelength modes (modes 1–50) 
yields a drop in reconstruction accuracy of around 40–60% whereas 
removal of the top 25% short-wavelength modes (modes 151–200) yields 
a drop of only around 2–4% (Fig. 3b, insets). These results indicate that, 
on temporal and spatial scales accessible with fMRI, evoked cortical 
activity comprises large-scale, nearly brain-wide spatial patterns, chal-
lenging classical views that such activity should be described in terms 
of discrete, isolated and anatomically localized activation clusters.

Wave dynamics bridge geometry and function
Geometric eigenmodes of the cortex are obtained by solving the eigen-
value problem of the LBO, which is also known as the Helmholtz equa-
tion (equation (1)). In physically continuous systems, the solutions of 
the Helmholtz equation correspond to the spatial projections of the 
solutions of a more general wave equation, such that the resulting 
eigenmodes inherently represent the vibrational patterns, or standing 
waves, of the system’s dynamics34. This equivalence implies that the 
superior efficacy of geometric eigenmodes in the reconstruction of 
diverse patterns of brain activity results from a fundamental role of 
wave dynamics in shaping these patterns, as predicted by NFT. This 
prediction has been confirmed through models of EEG recordings21,35, 
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eigenmodes. a, Schematic of the anatomical properties used to derive 
eigenmodes for cortical geometry, the connectome and the EDR connectome. 
Geometric eigenmodes rely on local surface mesh information such as links 
(blue) between neighbouring surface mesh vertices (dots) and curvature. 
Connectome eigenmodes rely on local links between mesh vertices (blue) and 
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exponentially decays as a function of their distance. b, Example connectome 
and EDR eigenmodes. Negative, zero and positive values are coloured blue, 
white and red, respectively. Despite some similarities, the spatial patterns of 
the modes are distinct from those derived using cortical geometry (compare 
with Fig. 1a). c, Reconstruction accuracy of resting-state FC matrices achieved 

by geometric, EDR and two variants of connectome eigenmodes: one using a 
connectome as defined using previous methods29 and the other with the  
same connection density as the EDR connectome to allow fair comparison  
(for other densities see Supplementary Figs. 6 and 7). d, Difference in 
reconstruction accuracy of all 47 HCP task-contrast maps achieved by 
geometric eigenmodes and the other basis sets, as indicated by the text above 
each panel. Each row represents a different task contrast, grouped here by broad 
types (Supplementary Information 2.1); red indicates superior performance  
for geometric eigenmodes. Note that while there seems to be a performance 
advantage for connectome eigenmodes for reconstructions incorporating 
fewer than ten modes relative to geometric eigenmodes, reconstruction 
accuracy is generally low (average r = 0.42 across the different tasks) compared 
with that for 100 modes (average r = 0.71).
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but waves across the whole brain have only recently been observed 
in fMRI signals36,37 and thus far lack a theoretical explanation. Here 
we use NFT and geometric eigenmodes to show that wave dynamics 
can provide a unifying account of diverse empirical and physiological 
phenomena observed at scales accessible with fMRI.

We model neural activity using an isotropic damped NFT wave equa-
tion without regeneration6 (Fig. 4a and NFT wave model in Methods). 
Under this model, activity propagates between points on the neocortex 
through their white-matter connectivity with a strength that decays 
approximately exponentially with distance (Supplementary Fig. 10 and 
Supplementary Information 1 and 8). To simulate resting-state neural 
activity we use a white noise input to mimic unstructured stochas-
tic fluctuations21 (Modelling resting-state dynamics in Methods). We 
compare the performance of this simple wave model with a biophysi-
cally based neural mass model (balanced excitation–inhibition (BEI) 
model) that has been used extensively to understand resting-state fMRI 
signals38 (Fig. 4a and Neural mass model in Methods). The neural mass 
model is closely aligned with the classical, connectome-centric view 
of brain function, representing dynamics as the result of interactions 
between neuronal populations in discrete anatomical regions, coupled 
according to an empirically measured connectome.

We first compare the efficacy of the two models in capturing dis-
tinct and commonly studied properties of spontaneous, task-free FC: 
namely, static pairwise FC (edge FC), static node-level average FC (node 
FC) and time-resolved dynamic properties of FC (FCD) (Modelling 
resting-state dynamics in Methods). Across all FC-based benchmark 
measures, the wave model shows comparable or superior performance 
in reconstruction of empirical data relative to the neural mass model 
(Fig. 4b). The wave model also captures time-lagged properties36,37,39 

of empirical resting-state activity more accurately than the mass 
model (Extended Data Fig. 9 and Measuring time-lagged properties 
of resting-state dynamics in Methods). This strong performance of the 
wave model is remarkable given its relative simplicity: the wave model 
only requires the geometry of the cortex (that is, the surface mesh) as 
input and includes one fixed parameter and one free parameter (rs) for 
fitting to data (Extended Data Fig. 10) whereas the neural mass model 
requires a dMRI-derived interregional anatomical connectivity matrix 
and comprises 15 fixed parameters and four free parameters (Sup-
plementary Information 9). These considerations indicate that wave 
dynamics offer a more accurate and parsimonious mechanistic account 
of macroscale, spontaneous cortical dynamics captured by fMRI.

We next consider stimulus-evoked cortical activity in the wave model. 
We analyse cortical responses to sensory stimulation of primary visual 
cortex (V1), because it elicits a well-defined hierarchy of regional corti-
cal responses40,41 (Modelling stimulus-evoked dynamics in Methods). A 
1 ms pulse input to V1 yields a propagating wave of activity that rapidly 
splits along the dorsal and ventral visual processing streams (Fig. 4c 
(arrows) and Supplementary Video 1), consistent with the mainstream 
understanding of hierarchical visual processing42. Remarkably, this 
result indicates that geometric constraints on travelling waves of 
evoked activity are sufficient for the segregation of the dorsal and 
ventral processing streams, which have traditionally been thought 
to be driven primarily by complex patterns of layer-specific connec-
tivity40,42,43. Furthermore, the temporal profile of evoked responses 
across the visual system follows a well-defined timescale hierarchy, 
with higher-order association areas showing peak responses that 
are delayed and prolonged compared with lower-order visual areas 
(Fig. 4d). These findings thus indicate that this hierarchical ordering, 
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previously identified in experimental and modelling studies41,44,45, 
emerges naturally from waves of excitation propagating through the 
cortical medium. Critically, this hierarchical temporal ordering of areal 
responses strongly correlates with an independent anatomical measure 
of the cortical processing hierarchy based on non-invasive estimates of 
myeloarchitecture (T1-weighted (T1w) and T2-weighted (T2w) ratio)46,47. 
This correlation is particularly strong within the visual processing hier-
archy (r = −0.72, one-sided spin-test P value (Pspin) = 0.003; Fig. 4e) but is 
also present when considering all cortical areas (r = −0.44, Pspin = 0.037; 
Supplementary Fig. 11). Together, our modelling results show how sim-
ple wave dynamics unfolding on the geometry of the cortex provide a 
unifying generative mechanism for capturing complex properties of 
spatiotemporal brain activity.

Geometry constrains subcortical activity
Our analyses thus far have focused on the strong coupling of geometry 
and dynamics in the neocortex. We next investigate this coupling in 
non-neocortical areas, focusing on the thalamus, striatum and hip-
pocampus, because these structures have geometries easily captured 
using MRI data and their functional organization has been extensively 
studied48.

We first generalize our eigenmode analysis to three-dimensional (3D) 
volumes (Estimating the geometric eigenmodes of non-neocortical 

structures in Methods), yielding geometric eigenmodes that extend 
spatially through the three spatial dimensions of each structure. 
Next, to fully capture the macroscale functional organization of these 
non-neocortical regions, we apply a widely used manifold learning 
procedure to voxel-wise FC data to obtain the key functional gra-
dients in each structure49 (Mapping the functional organization of 
non-neocortical structures in Methods). These functional gradients 
describe the principal axes of spatial organization dictated by simi-
larities in FC, thus representing the dominant modes of variation in 
functional organization, ordered according to the percentage of vari-
ance in FC similarity that they explain.

The spatial profiles of the first three functional gradients of the 
thalamus, striatum and hippocampus (accounting for 24, 50 and 
47% of the variance in FC similarity, respectively) show a near-perfect 
match to the first three geometric eigenmodes (Fig. 5a–c; spatial 
correlations r ≥ 0.93). This tight correspondence generalizes out to 
the first 20 modes and first 20 gradients of each structure (with the  
first 20 gradients respectively accounting for 49, 70 and 68% of total 
variance in FC similarity), with all absolute spatial correlations |r| > 0.5, 
except for the 20th gradient and 20th mode in the striatum and  
hippocampus (Fig. 5d–f). This strong relationship is striking given 
that the functional gradients are generated via a complex processing 
pipeline applied to fMRI-derived FC measures whereas the eigenmodes 
are derived simply from each structure’s geometry, independent of the 
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functional data. These findings suggest that the functional organization 
of non-neocortical structures derives directly from their geometric 
eigenmodes.

Discussion
The dynamics of many physical systems are constrained by their geom-
etry and can be understood as excitations of a relatively small num-
ber of structural modes12. Here we show that structural eigenmodes 
derived solely from the brain’s geometry provide a more compact, 
accurate and parsimonious representation of its macroscale activity 
than alternative connectome-based models. This mode-based view 
of the brain further shows that both spontaneous and evoked brain 
activity captured by fMRI are dominated by large-scale eigenmodes 
with relatively long wavelengths, whose dynamics are derived from a 
biophysically motivated wave equation. These findings challenge the 
classical neuroscientific paradigm in which topologically complex 
patterns of interregional connectivity between discrete, specialized 
neuronal populations are viewed as a critical anatomical foundation 
for dynamics. Instead, our results indicate that a physically grounded 
approach that treats the brain as a continuous, spatially embedded 
system offers a unifying framework for understanding structural con-
straints on diverse aspects of macroscopic neuronal function.

The extensive comparisons of geometric eigenmodes with other 
anatomical (connectome and EDR eigenmodes) and statistical (PCA 
and Fourier) basis sets show that the superior performance of geo-
metric eigenmodes in capturing macroscale neocortical activity is 
not trivially driven by generic mathematical properties of basis set 
expansions. Rather, this result indicates that geometry represents a fun-
damental anatomical constraint on dynamics. Additionally, the strong 
performance of the EDR eigenmodes derived from a synthetic network 
suggests that a homogeneous, distance-dependent connectivity with 

near-exponential form represents another important anatomical con-
straint on activity. EDR-like connectivity is mathematically embed-
ded within the Helmholtz equation in equation (1)6,7 (Supplementary 
Information 8), so the role of such connectivity is implicitly captured 
by the geometric eigenmodes.

The comparatively poor performance of connectome eigenmodes 
indicates that topologically complex connections that exist beyond a 
simple EDR afford minimal further benefit in obtaining eigenmodes 
that can accurately explain spatiotemporal patterns of cortical activity 
as measured with fMRI. Our findings thus counter traditional views that 
emphasize intricate patterns of anatomical connections as the primary 
driver of coordinated dynamics26,50–52. Indeed, recent estimates indicate 
that long-range cortical connections are rare53—they may therefore rep-
resent a relatively minor perturbation of the dominant effect imposed 
by EDR-like connectivity. Nonetheless the topological centrality, meta-
bolic cost and tight genetic control of such connections54,55 suggest 
that they provide important functional and evolutionary advantages 
beyond wave-like dynamics56 (Supplementary Information 11). The 
limited resolution and sensitivity to preprocessing pipelines of dMRI 
and fMRI data57,58 complicate attempts to fully uncover the functional 
role of these connections. High-quality animal tract-tracing and elec-
trophysiological data may be helpful in this regard.

The close coupling between geometry and dynamics is apparent 
in neocortical and non-neocortical structures alike, suggesting that 
the functional organization of regions outside the neocortex is also 
dominated by distance-dependent anatomical connectivity and wave 
dynamics, as found in recent experiments36,59,60. These observations 
indicate that geometric eigenmodes offer a simpler, more parsimoni-
ous and mechanistically informative account of putative gradients of 
functional organization in non-neocortical structures than the complex 
manifold learning procedures currently used in the literature49. This is 
because such procedures are phenomenological, providing statistical 
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descriptions of dominant sources of variances in the data, whereas the 
study of structural eigenmodes derives from a generative process.

Geometric mode decomposition offers unique insights into the 
spatial properties of brain activation maps. Classical brain-mapping 
analyses focus on responses in isolated clusters of spatial locations 
that exceed a statistical threshold61. By contrast, our approach aligns 
with rigorously established results from physics and engineering in 
which perturbations of spatially continuous systems elicit system-wide 
responses, just as the musical notes of a violin string result from 
vibrations across its entire length rather than from the behaviour of a 
restricted segment62. Accordingly, the use of geometric eigenmodes 
indicates that, across more than 10,000 diverse maps from task-based 
fMRI studies, task engagement is associated predominantly with the 
excitation of modes with wavelengths of roughly 60 mm and longer. 
This result coincides with similar observations of long-wavelength 
excitations in empirical EEG and evoked response potential data30,31 
and suggests that classical analyses reliant on thresholding of pointwise 
statistical maps obscure the spatially extended and complex patterns 
of activity actually evoked by a task.

Our modelling results offer insight into the physical processes that 
underlie the close link observed between geometry and function. In 
particular, the relative simplicity and superior performance of the 
wave model in capturing diverse aspects of spontaneous fMRI dynam-
ics indicate that the model provides a more parsimonious account 
than a complex neural mass model, which treats the brain as a graph 
of discrete anatomical regions (nodes) coupled via the connectome 
(edges). This finding is consistent with experimental observations of 
wave dynamics in both human and animal fMRI data63,64. Future work 
could explore whether the introduction of spatial heterogeneities65 or 
complex structured input66 into the wave model further improves its 
accuracy in explaining diverse empirical phenomena.

Application of the wave model to mimic visual stimulation shows 
that waves propagating from the stimulation site segregate along 
the classical dorsal and ventral visual pathways, and that regional 
responses to the perturbation conform to a well-described hierarchy 
of timescales that range from rapidly responding unimodal areas to 
slower transmodal regions41,44,45. These canonical properties of hier-
archical visual processing have been extensively studied for decades 
and are conventionally thought to be driven by complex patterns of 
layer-specific interregional connectivity40,42,43, but our analysis shows 
that waves travelling through the cortical geometry are sufficient for 
the emergence of segregated, hierarchical processing streams. Thus, 
while our findings cannot rule out a role for complex interregional 
connectivity they do indicate that such connectivity is not necessary 
for the emergence of these macroscale dynamics.

The superior performance of geometric eigenmodes offers an imme-
diate practical benefit because the modes can be estimated using only 
a mesh representation of the structure of interest, which can easily 
be derived using well-established, automated processing pipelines 
for T1w anatomical images67. By contrast, connectome eigenmodes 
require a graph-based model of macroscopic interregional connectiv-
ity generated via complex data-processing pipelines applied to both 
T1w and dMRI images58,68; the definition of graph nodes, which is a 
topic of contention69; and the application of a thresholding procedure 
to remove putatively spurious connections, which our own analysis 
shows can affect the findings (Supplementary Figs. 6 and 7). The fact 
that such choices are not required to obtain the geometric eigenmodes 
means that they can be applied robustly and flexibly across different 
experimental contexts in both humans and other species70,71, opening 
new avenues of research. For example, one can investigate how geomet-
ric eigenmodes vary through neurodevelopment or are disrupted in 
clinical disorders. Indeed, the close link we identify between geometry 
and function implies that interspecies differences in spatiotempo-
ral dynamics may largely be driven by differences in brain shape. The 
characterization of how variations in brain geometry, both within and 

between species, shape brain function will be essential for understand-
ing physical and anatomical constraints on neuronal activity.
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Methods

Derivation of cortical geometric eigenmodes
If brain structure can be approximated as being constant in time, the 
resulting spatial and temporal dynamics can be treated separately via 
eigenmode decomposition1,7, similar to the treatment of other physi-
cal systems12. In particular, the spatial aspect satisfies the Laplacian 
eigenvalue problem, which is also known as the Helmholtz equation, 
defined in equation (1).

For the cerebral cortex, which we consider as a two-dimensional (2D) 
model embedded within 3D Euclidean space, the LBO in equation (1) 
captures intrinsic geometry, which includes the curvature of the corti-
cal surface72 and is defined generally as73,74,
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where xi,xj are the local coordinates, g ij is the inverse of the inner prod-
uct metric tensor g := � , �ij x x

∂
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∂i j

, W := √det(G), det denotes the deter-

minant and G g:= ( )ij
.

We employed the LaPy python library72,75 installed in the MASSIVE 
high-performance computing facility76 to derive the geometric eigen-
modes of the human cortex. Specifically, we used a triangular surface 
mesh representation of the midthickness human cortical surface, com-
prising 32,492 vertices in each hemisphere, obtained from a down-
sampled, left–right symmetric version of the FreeSurfer’s fsaverage 
population-averaged template77 (https://github.com/ThomasYeoLab/
CBIG/tree/master/data/templates/surface/fs_LR_32k). This template is 
independent of the data sample used in all our analyses, thus obviating 
any concerns about circularity.

Note that the continuous LBO operates on the underlying Riemann-
ian manifold of the surface and not directly on mesh vertices. LaPy uses 
the cubic finite element method on the surface mesh to achieve numeri-
cally tractable solutions of equation (1) on an interpolated smooth man-
ifold. This distinguishes it from the discrete graph Laplacian78, which 
does not encode spatial relations between points. All our analyses were 
focused on unihemispheric eigenmodes, but our approach can easily 
be extended to the whole brain because bihemispheric eigenmodes 
can be represented as symmetric or antisymmetric combinations of the 
eigenmodes derived from each hemisphere7; symmetric combinations 
correspond to mirror symmetry across the sagittal midplane and asym-
metric combinations correspond to cases in which the hemispheres 
have the same spatial structure but with flipped signs.

The eigenvalue solutions of equation (1) are ordered sequentially 
according to the spatial frequency or wavelength of the spatial patterns 
of each eigenmode—that is, λ λ0 ≤ ≤ ≤ …1 2 . Note that the first eigenvalue, 
λ1, is approximately equal to zero (wavelength much greater than  
brain size) and the corresponding eigenmode, ψ1, is a constant function 
with no nodal lines (zero sets of the function). Throughout our study, 
we used the first 200 modes (including the constant mode, ψ1) in our 
analyses given the diminishing improvements in reconstruction accu-
racy observed when using an increasing number of modes (Fig. 1d).

Each eigenmode comprises spatial patterns with a specific spatial 
wavelength. Following ref. 7, we approximate the eigenmode wave-
lengths using an idealized spherical case because it is topologically 
comparable to the human cortex. By solving equation (1) on a sphere, 
degenerate solutions exist such that certain eigenmodes have the 
same eigenvalue and spatial wavelength—this is analogous to spheri-
cal harmonics in quantum physics. In fact, because the eigenmodes 
will approach the spherical harmonics in the limit of vanishing cortical 
folding7, the former can be grouped together into an eigengroup with 
spatial wavelength71,

πR

l l
wavelength =

2

( + 1)
, (3)

s

where Rs is the radius of the sphere (for the fsaverage population- 
averaged template used in this study, Rs ≈ 67.0 mm) and l is the eigen-
group number (the angular momentum quantum number in atomic 
physics). The wavelengths of the first 15 eigengroups and the eigen-
modes included in the eigengroup are shown in Supplementary Table 1.

Modal decomposition of brain activity
We used the geometric eigenmodes to decompose spatiotemporal fMRI 
data, measured at spatial location r and time t, for each individual, as 
a weighted sum of modes,

∑y t a t ψ( , ) = ( ) ( ), (4)
j

N

j j
=1

r r

where aj is the amplitude of mode j in explaining the data, ψj is the jth 
mode and N is the number of modes used; we used N = 200 for our 
analyses. For spatiotemporal data—that is, recordings of spontaneous 
dynamics from task-free fMRI—each time frame of the data was sub-
stituted into equation (4), resulting in a time-dependent amplitude 
a t( )j  for each mode ψj. For purely spatial data—that is, task-evoked 
activation maps—amplitudes are independent of time such that 
a t a( ) →j j. In both cases, the amplitudes can be obtained by integrating 
over the cortical surface,

r r r∫a t y t ψ d( ) = ( , ) ( ) , (5)j j

which can be derived from equation (4) using the orthogonal property 
of the eigenmodes62,79. If there are insufficient measurements to evalu-
ate the integral, the amplitudes can also be estimated via a statistical 
general linear model.

After obtaining the amplitudes, equation (4) was used to calculate the 
reconstructed data. We quantified the accuracy of this reconstruction 
by calculating the correlation between empirical and reconstructed 
data. For the spatiotemporal task-free data, we first parcellated the 
empirical and reconstructed data by taking the average of the data 
within discrete parcels/regions as per standard practice in the field80, 
and then constructed a matrix of interregional FC by calculating the 
Pearson correlation coefficient of pairs of parcel time series. For 
task-evoked data, we applied the same parcellation on the activation 
maps to allow direct comparison. Finally, reconstruction accuracy 
for task-free data was calculated by taking the correlation of the 
upper triangular elements of the empirical and reconstructed FCs.  
For task-evoked data, reconstruction accuracy was calculated from the 
spatial correlation of parcellated empirical and reconstructed maps. We 
then took the average reconstruction accuracy across all participants.

HCP data
We used preprocessed fMRI data from HCP27. We did not perform any 
additional preprocessing steps, such as global signal removal, because 
the first eigenmode (considered as the global, constant mode) already 
explicitly captures global deviations in the data, allowing the other 
modes to capture functionally relevant non-global activity. We ana-
lysed data from 255 unrelated healthy individuals (aged 22–35 years, 
132 females and 123 males), which is the largest HCP sample exclud-
ing twins or siblings, and with all participants having completed 
task-evoked and task-free resting-state data. All participants were 
volunteers and provided informed consent. The open-access data 
were acquired by the WU–Minn HCP consortium with local overseeing 
ethics committee approval and were shared with the authors according 
to HCP’s data use terms. All our procedures were carried out in accord-
ance with protocols set by these data use terms. For a detailed account 
of the image acquisition protocol, preprocessing pipelines and ethics 
oversight, see refs. 27,32.

Within the HCP dataset we analysed task-evoked fMRI meas-
ured in seven task domains (Supplementary Table 2) and task-free 
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resting-state fMRI, which were already preprocessed by HCP. Both 
datasets were mapped onto the fsLR-32k CIFTI space with 32,492 ver-
tices in each hemisphere. Further details on data and preprocessing 
can be found in Supplementary Information 2.1 and 2.2. We also ana-
lysed individual connectomes derived from dMRI data, as provided 
in ref. 81. The connectomes represent a high-resolution weighted 
matrix of size 32,492 × 32,492 for each hemisphere. Further details 
on data and connectome construction can be found in Supplementary  
Information 2.3.

Cortical parcellations
The main results of the study analysed task-evoked activation maps 
and task-free FC data parcellated into discrete regions. We presented 
results using the HCP–MMP1 parcellation with 180 regions per hemi-
sphere (we term this the Glasser360 parcellation), which reflects sharp 
areal boundaries based on the combination of cortical architecture, 
function, connectivity and topography28. The parcellation was on the 
fsLR-32k space as provided by HCP. To test the robustness of our results 
(Supplementary Fig. 2 and Extended Data Figs. 2 and 3) we also per-
formed our analysis using parcellations provided by Schaefer et al.82 
on the fsLR-32k space at varying resolution (100, 200, 400, 600, 800 
and 1,000 parcels across both hemispheres; we refer to these as, 
respectively, Schaefer100, Schaefer200, Schaefer400, Schaefer600, 
Schaefer800 and Schaefer1000 parcellations).

Derivation of connectome eigenmodes
Connectome eigenmodes were derived according to previous meth-
ods29 to enable comparison with previous findings. Note that, in previ-
ous studies19,20,29,83, connectome eigenmodes have been referred to as 
connectome harmonics but we use the term eigenmodes here because 
the term harmonics implies integer frequency ratios, which is not nec-
essarily guaranteed for brain-derived modes.

We obtained high-resolution maps of connectivity measured with 
dMRI tractography as described in ref. 81, in which the connectivity of 
each of the 32,492 vertices in the cortical surface mesh was estimated 
by tracing streamlines from each point until they terminated at some 
other point. Connection weights between vertices (considered as 
nodes) were estimated as the number of interconnecting streamlines 
without the need for normalization84. Tractography was performed on 
individuals from HCP (see Supplementary Information 2.3 for further 
details on the data and tractography method). From the tractogra-
phy data we combined the individual weighted connectivity matrices 
of size 32,492 × 32,492 to generate a group-averaged connectome,  
Wconnectome, with weights representing the average number of stream-
lines. We then generated a binary adjacency matrix, Alocal, that captures 
the discrete representation of local spatial relations between points in 
the cortical surface mesh model constructed by connecting two verti-
ces that are direct neighbours in the mesh. These links are intended to 
capture local, very-short-range connectivity that cannot be resolved 
by traditional dMRI tractography29.

Following ref.  29, the group-averaged weighted connectome,  
Wconnectome, was thresholded to remove the smallest weights such that 
the number of connections was fourfold greater than Alocal. The result-
ing thresholded matrix was binarized to obtain the group adjacency 
matrix, Aconnectome. Finally we generated a merged adjacency matrix 
A A A=C local connectome  (with matrix of size 32,492 × 32,492; || is the 
logical OR operator), which captures both local vertex-to-vertex con-
nectivity and complex short- and long-range connections as measured 
empirically. Note that the connection density of the adjacency matrix, 
AC, that resulted from the thresholding process described above was 
0.10%.

The connectome eigenmodes were obtained by solving the eigen-
value problem,

L ψ λψ′ = − , (6)

where L′ is the normalized graph Laplacian, a discrete counterpart of 
the LBO. The normalized graph Laplacian is related to the unnormal-
ized graph Laplacian, L, as L D LD′ = −1/2 −1/2, with L defined according to 
previous work34,

L D A D A=
1
2

[( − ) + ( − ) ], (7)T
C C

where D is the diagonal degree matrix and superscript T denotes matrix 
transpose. As with geometric eigenmodes, the eigenvalue solutions 
of equation (6) form the sequence λ λ0 ≤ ≤ ≤ …1 2 . Note also that the 
use of a high-resolution, vertex-level connectome results in connec-
tome eigenmodes spanning a space with dimensions (number of 
modes) equal to the number of vertices, allowing fair comparison with 
geometric eigenmodes.

Derivation of EDR eigenmodes
Exponential distance rule eigenmodes were derived also by solving 
equation (6). However, in this case the non-normalized graph Laplacian, 
L, was defined using a synthetically constructed 32,492 × 32,492 adja-
cency matrix, AE, that follows a stochastic EDR. To construct AE we used 
the group-averaged, unthresholded weighted connectome, Wconnectome, 
from the previous section. We then fitted the variation of weights as a 
function of Euclidean distance, d, between vertices in the cortical sur-
face by an exponential function of the form e αd− , where α is a scale 
exponent parameter. The fitting was performed in MATLAB 2019b 
using a nonlinear least-squares method, resulting in an optimal empir-
ical parameter value of α = 0.12empirical , consistent with previous esti-
mates based on the connection probability versus distance function85. 
We then generated a random, binary adjacency matrix following a 
stochastic EDR wiring process in which two vertices were connected 
with probability e αd−  with α α= = 0.12empirical .

The adjacency matrix, AE, generated by instances of the EDR model 
had a connection density of 1.55%, which was substantially higher than 
the 0.10% density of AC. We therefore constructed another version of 
connectome eigenmodes that thresholded the group-averaged empiri-
cal connectome to achieve a final AC with a density that matched AE to 
allow fair comparison (we termed this density-matched connectome 
eigenmodes). Supplementary Figs. 6 and 7 present a more thorough 
evaluation of the performance of connectome eigenmodes as a func-
tion of network connection density.

Comparisons with statistical basis sets
The geometric, connectome and EDR eigenmode basis sets were all 
derived from a generative model that accounts for how brain function 
emerges from anatomy. This approach contrasts with the statistical 
basis sets commonly used in the literature, which can efficiently sum-
marize the data but offer no insights into the underlying generative 
process. We evaluated the performance of geometric eigenmodes with 
respect to two statistical basis sets, one derived from PCA of the func-
tional data themselves and the other based on a Fourier spatial basis 
set. Further details of these analyses are provided in Supplementary 
Information 5 and 6, respectively.

Modal power spectra of task-evoked activation maps
To investigate the spectral content of task-evoked activation maps we 
calculated their modal power spectra using the modal decomposition 
in equation (4) and taking the absolute square of the amplitudes, a. This 
is analogous to calculation of the temporal power spectral density from 
Fourier analysis. We then normalized the power in mode j with respect 
to the total power in all modes, such that
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We calculated the modal power spectra of two sets of task-evoked 
data. The first set comprises unthresholded activation maps from the 
HCP task-evoked data (Supplementary Information 2.1). Before per-
foming spectral analysis we took the group average of the activation 
maps across 255 individuals and then analysed the power spectrum of 
the group-averaged activation map of each task contrast. The results 
in Fig. 3a and Extended Data Fig. 8a show the mean power spectrum 
across the 47 HCP task-contrast maps. Contrast-specific power spectra 
for the seven key HCP task contrasts are shown in Extended Data Fig. 7.

The second set comprises 10,000 activation maps from 1,178 inde-
pendent experiments from the NeuroVault repository (https://neu-
rovault.org/)33. We used the python module Nilearn86 to retrieve 
activation maps from NeuroVault that were unthresholded and with 
a modality tag of fMRI-BOLD. We projected the activation maps from 
volume onto the fsLR-32k CIFTI space to match the HCP data using 
Nilearn (via the function nilearn.surface.vol_to_surf). We then ana-
lysed the power spectrum of each activation map. The results in Fig. 3a 
and Extended Data Fig. 8a show the mean power spectrum across the 
10,000 NeuroVault maps.

We then compared the power spectra of the empirical maps with 
those of surrogate random maps with varying levels of smoothing to 
further investigate the relevance of long-wavelength modes. In par-
ticular, we generated 10,000 random maps in volume space, which 
we smoothed at kernel sizes with full-width at half-maximum rang-
ing from 0 to 50 mm, and projected onto the fsLR-32k CIFTI space. 
We then calculated the mean square logarithmic error (MSLE) of the 
power spectra between the empirical and surrogate maps. Further 
details of this analysis and the MSLE measurements are provided in 
Supplementary Information 7.

Contributions of long- and short-wavelength modes
To understand the contributions of long- and short-wavelength 
geometric eigenmodes in the reconstruction of task-evoked activa-
tion maps, we sequentially removed modes before performing the 
reconstruction process. Specifically, we started by reconstructing 
the seven key HCP contrast maps using 200 geometric eigenmodes 
and calculated the reconstruction accuracy (that is, correlation 
between empirical and reconstructed maps), serving as our baseline. 
We then performed an incremental, sequential removal of modes 
starting from long-wavelength modes (that is, removal of mode 1, 
modes 1–2, modes 1–3, modes 1–4, …, modes 1–200) and calculated 
reconstruction accuracy at every increment. We repeated the same 
procedure but starting from short-wavelength modes (that is, removal 
of mode 200, modes 199–200, modes 198–200, modes 197–200, …,  
modes 1–200).

NFT wave model
As stated above, an implication of the superior performance of geomet-
ric eigenmodes is that neuronal activity is dominated by wave dynamics 
as predicted by NFT. To investigate whether wave dynamics can explain 
complex spatiotemporal patterns of neuronal activity, we implemented 
a simple NFT wave model in which dynamics are described by an iso-
tropic damped wave equation without regeneration5,6,87,
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where φ t( , )r  is the neural activity at location r and time t, Q is an exter-
nal input, γs is the damping rate and rs is the spatial length scale of the 
wave propagation (conceptually related to the α-length scale of the 
stochastic EDR wiring process in the derivation of EDR eigenmodes). 
This form tells us that an impulse input will produce an activity that 
dissipates at a rate of γs and propagates at a velocity of γsrs. Here we 
treated γs as a fixed parameter with the value of 116 s−1 taken from elec-
trophysiological estimates21 and rs as a free parameter. We applied the 

model on the cortical midthickness surface mesh with 32,492 vertices 
per hemisphere to solve the activity at each vertex. Note that the prop-
agation of activity between points is governed by their white-matter 
connectivity, with strength that decays approximately exponentially 
with distance (Supplementary Fig. 10). This distance dependence is 
more apparent when equation (9) is converted into its equivalent inte-
gral form (see Supplementary Information 8 for details).

Neural mass model
We compared the performance of our simple NFT wave model with a 
biophysical large-scale neural mass model in which mesoscopic dynam-
ics emerge from the interactions of neural populations (that is, neural 
masses) coupled via an empirical anatomical connectivity18. In a typical 
neural mass model, each brain region i has its own mean-field popula-
tion dynamics and its temporal activity, Si, is defined by the general 
equation,
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f θ C G
d
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where f is a function describing the evolution of the region’s activity. The 
function depends on the activity of other regions S, local population 
parameters θi, anatomical connectivity between regions C (a parcel-
lated version of the vertex-resolution connectome, Wconnectome, used to 
derive the connectome eigenmodes) and global coupling parameter 
G that scales the connectivity between regions.

There are several whole-brain neural mass models available in the 
literature that we can use88, from simple phase oscillator models (for 
example, the Kuramoto model89) to more complex biophysical popu-
lation models (for example, the Wilson–Cowan model90). All these 
models follow the form of equation (10), especially their reliance on an 
anatomical interregional connectivity matrix, C. Here we focus on one 
widely used neural mass model, the BEI model38,65,91,92. The BEI model 
uses a mean-field approach to approximate local population dynamics 
in each brain region, which are coupled via an anatomical connectivity 
matrix derived from dMRI. Each brain region i comprises interacting 
populations of excitatory (E) and inhibitory (I) neurons governed by 
the following nonlinear stochastic differential equations,
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where Si
E I( , ), ri

E I( , ) and Ii
E I( , ) represent the synaptic gating variable, firing 

rate and total input current, respectively, for E and I populations. The 
parameters τE,I are the time constants, γ is a kinetic rate constant and 
vi(t) is a time-varying random Gaussian input with standard deviation 
σ. The functions H(E,I) are sigmoidal neuronal response functions trans-
forming total input currents Ii

E I( , ) into firing rates ri
E I( , ), which are 

parametrized by the gain factors aE,I, threshold currents bE,I and 
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curvature parameters dE,I. In equations (15) and (16), Ii

ext is the external 
input, I0 is the local input current scaled by WE and WI for the excitatory 
and inhibitory populations, respectively, wEE is the  excitatory– 
excitatory strength, wEI is the excitatory–inhibitory strength, wIE is 
the inhibitory–excitatory strength, G is the global coupling parameter, 
J is the effective N-methyl-d-aspartate (NMDA) conductance and Cij is 
the structural connectivity strength between regions i and j estimated 
from dMRI.

Overall, the BEI model has 15 fixed parameters and four free param-
eters, as detailed in Supplementary Table 3. The values of the fixed 
parameters were taken from ref. 91. To allow direct comparison we also 
used the discretized connectome data provided by ref. 91 to define 
the interregional structural connectivity matrix, C. These connec-
tome data were derived from minimally preprocessed dMRI data of 
334 unrelated HCP subjects and constructed via the probabilistic 
tractography tool of FMRIB Software Library (FSL)93. We refer read-
ers to ref. 91 for further details of data processing and connectome 
construction. Our results did not change when the parcellated version 
of our connectome data was used. We note that numerical solutions 
of NFT equations (such as in equation (9)) also spatially discretize the 
cortex, but into a very fine array of points, before integrating whatever 
temporal dynamics have been chosen at each point with connectivity 
that is correct in the continuum limit. As such, neural mass models 
are approximations to the more general NFT approach94,95. We also 
reiterate that local dynamics do not affect the spatial eigenfunctions 
of the NFT wave model.

Haemodynamic model
To simulate fMRI data we transformed the neural activity generated 
by the NFT wave and BEI neural mass models to a blood oxygen-level 
dependent (BOLD) signal using the well-established Balloon–Wind-
kessel haemodynamic model96. Note that, although this model is a 
simple approximation to more detailed models of the physiological 
haemodynamic processes underlying the BOLD signal97–99, we use this 
approximation here to allow direct comparison with the vast majority 
of modelling studies in the literature65,91,92,100,101. The BOLD–fMRI signal 
in each vertex or brain region i is governed by the following differential 
equations,
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where zi, fi, vi, qi and yi are the vasodilatory signal, blood inflow, blood 
volume, deoxyhaemoglobin content and BOLD signal variables, respec-
tively. The variable Ni represents the neural activity generated by the 
wave and BEI neural mass models. For the wave model, N(t) is ϕ(t), and 
for the BEI neural mass model, N t( )i  is S t( )i

E( ) . The model parameters 
and their values taken from previous work96,102 were as follows: 
κ = 0.65 s−1 is the signal decay rate, γ = 0.41 s−1 is the flow-dependent 
elimination rate, τ = 0.98 s is the haemodynamic transit time, α = 0.32 
is the Grubb’s exponent, ρ = 0.34 is the resting oxygen extraction 

fraction, V0 = 0.02 is the resting blood volume fraction and k1 = 3.72, 
k2 = 0.53 and k3 = 0.53 are 3T fMRI parameters.

Modelling resting-state dynamics
We used the NFT wave and BEI models, together with the haemody-
namic model, to estimate various spontaneous FC properties. For the 
wave model we solved equation (9) with a white noise input to mimic 
the absence of any structured stimulus, following previous studies21,103. 
We combined the resulting solution with the haemodynamic model in 
equations (17–21) to simulate the BOLD–fMRI signal. The simulated 
BOLD signal was downsampled to a sampling interval of 0.72 s with 
1,200 time frames to match the resting-state HCP data described in 
Supplementary Information 2.2. Finally we parcellated the simulated 
BOLD signal using the HCP–MMP1 parcellation and calculated the 
correlation matrix representing the model FC.

For the BEI model we can use the method described above to calculate 
the model FC starting from the numerical solutions of equation (11) for 
each brain region. However, it has been shown that one can linearize the 
equations of the BEI and haemodynamic models to obtain an analytic 
approximation of the model FC91. Due to the large number of model 
parameters in the BEI model we used this analytic approximation in 
this study because it allows more comprehensive and computationally 
efficient model fitting. See ref. 91 for further details.

We fitted the model FCs to empirical FCs (also parcellated using 
the HCP–MMP1 parcellation) of the same HCP participants used in 
all our analyses by fitting each model’s free parameters. We divided 
the participant sample into training and test sets, each with 125 indi-
viduals, to enable out-of-sample evaluation of model performance 
and to avoid overfitting. In particular, we fitted the model parameters 
on the training set data and used the fitted model parameters to pre-
dict the test set data. Model fitting and performance evaluation were 
based on three widely used FC-related metrics65,92: edge FC, node FC  
and FCD.

The edge FC metric was calculated by taking the Pearson correlation 
of the upper triangular elements (that is, the strength of FC edges) of 
the z-transformed model and empirical FCs. We only took the upper 
triangular elements because the FC values are symmetric with respect 
to the diagonal. Higher correlations represent a better fit between 
model and data.

The node FC metric was calculated by taking the Pearson correlation 
of the average FC strength of each brain region in the model and empir-
ical FCs. The average FC strength of a brain region i was defined as 

∑ FCn j
n

ij
1

=1 , where n is the total number of brain regions. Once again, 
higher correlations indicate better model fits.

The FCD metric captures the spatiotemporal statistics of resting-state 
activity and was calculated as follows92. The time series at each region 
i was filtered between 0.04 and 0.07 Hz using a second-order Butter-
worth filter; this band was based on ref. 104 and its inclusion was moti-
vated by its functional relevance to the brain105,106. The time series was 
then Hilbert (H) transformed to calculate the quantity y t x t jH t( ) = ( ) + ( )i i i , 
where j is the imaginary number. The instantaneous complex argument 
θ t H t x t( ) = tan [ ( )/ ( )]i i i

−1  was then computed. The level of synchrony 
between regions i and j at time t, i j t∆( , , ), was calculated as

i j t θ t θ t∆( , , ) = cos[ ( ) − ( )] . (22)i j

Note that we do not term θ t( )i  a phase, as is sometimes done in the 
literature, because our signals are broadband whereas this interpreta-
tion is applicable only to signals that are nearly monochromatic. We 
computed this quantity for comparison with previous work65,92, then 
we calculated the similarity of global synchrony, φuv, between two time 
instances, τu and τv, with φuv defined as
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d d
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Here, φuv is the FCD, which is a symmetric time × time matrix inter-
preted as the similarity of global synchrony between times τu and τv. 
We then compared the distributions of the upper triangular elements 
of the model and empirical FCD estimates, concatenated across all 
individuals or model realizations as per ref. 92, to better capture the 
general fluctuations of the data. The FCD distributions of the model and 
the data were compared using the KS statistic, with lower KS statistic 
indicating better model fit.

The wave model has one free parameter—the spatial length scale of 
wave propagation, rs—that was optimized to fit the empirical fMRI data. 
Specifically, we constructed a vector of 20 values of rs evenly spaced 
between 10 and 100 mm. For each rs value the FC metrics described 
above were calculated. The optimization landscapes are shown in 
Extended Data Fig. 10. We took the value of rs that minimized the FCD 
KS statistic because this metric has been found to be the most stringent 
benchmark for model–data comparisons among the three metrics 
discussed above92. This procedure resulted in an optimized value of 
rs = 28.9 mm, which is smaller than those obtained previously in analy-
ses of EEG data21, possibly due to either the haemodynamic processes 
limiting neural activity propagation to neighbouring regions or our 
focus here on cortico-cortical dynamics97,98.

The BEI neural mass model has 15 fixed parameters and four free 
parameters—that is, wEE, wEI, wIE and G—that were optimized to fit the 
data, following ref. 91. This procedure resulted in optimized param-
eters wEE = 9.80, wEI = 1.48, wIE = 7.13 and G = 6.87. Further details of the 
optimization process can be found in Supplementary Information 9.

Measurement of time-lagged properties of resting-state dynamics
In addition to the FC-based metrics used for model fitting and evalu-
ation of model performance, we investigated whether the wave and 
neural mass models could also capture the temporal properties of 
propagated activity. In particular we analysed the lag structure (or 
lag threads) of resting-state BOLD–fMRI time courses, as proposed 
by refs. 39,107. We briefly discuss the algorithm for calculation of the 
lag structure of both empirical and simulated fMRI data in Supple-
mentary Information 10 and refer readers to previous articles39,107 for 
further details. Note that there are several other ways of characterizing 
the spatiotemporal properties of resting-state activity37,108,109, but the 
method currently chosen is sufficient for our purposes.

Modelling stimulus-evoked dynamics
We also evaluated the degree to which the wave model could capture 
classical properties of evoked neural responses. Specifically we used 
the optimized wave model (with rs = 28.9 mm) to investigate neural 
dynamics in response to a stimulus applied to the left V1. In particular, 
the stimulus Q(r,t) was a 1 ms pulse (t = 1–2 ms) with magnitude 20 s−1 
(the results are robust to changes in amplitude) restricted to vertices 
in the cortical surface that fall within the V1 region as defined by the 
HCP–MMP1 parcellation. We performed the simulation over a 100 ms 
time period with 0.1 ms resolution. Finally we parcellated the activity 

rφ t( , ) into 180 regions using the HCP–MMP1 parcellation.
We compared the activity profile (amplitude versus time) of each 

brain region, focusing on the time for the activity to reach peak ampli-
tude (that is, time to peak). Specifically we investigated whether the 
temporal precedence of activity follows the human visual cortical 
hierarchy from visual to frontal cortices, which includes the following 
17 brain regions: V1, V4, 7m, 7Am, TE1p, 7AL, 24dd, 2, 24dv, 8BM, 10r, 
10v, 8BL, 10pp, 10d, 9-46v and 9-46d. These regions closely resemble 
areas previously identified in the macaque neocortex visual hierarchy 
using tract-tracing data and nonlinear network modelling41.

We also compared the regional estimates of peak response times to 
T1w:T2w values, which is a non-invasive measure sensitive to intracorti-
cal myelin content46 and a good proxy for cortical hierarchy rank110. The 
myelin map in fsLR-32k space was obtained from the HCP dataset27,28 
and then parcellated using the HCP–MMP1 parcellation. We quantified 
the relationship between the regional values of time to peak and myelin 
content via Spearman rank correlation. The statistical significance of 
the correlation was assessed by comparison with a null distribution 
of 10,000 correlation values obtained using a spatially constrained 
spin-test approach111,112. This approach calculates the correlation 
between one map and random spatially rotated versions of the other 
map, thereby preserving the spatial relationship of the parcels in the 
map. The resulting P value, Pspin, is the fraction of null correlation values 
greater than the empirical correlation value. Finally we repeated the 
above statistical test including all brain regions (that is, not restricted 
to visual hierarchy brain regions) to ensure that our findings were not 
driven by our particular selection of regions of interest (ROIs). This 
is a more conservative test because not all brain regions show strong 
evoked responses to visual stimulation.

Estimation of the geometric eigenmodes of non-neocortical 
structures
We extended our eigenmode analysis to regions outside the neocortex, 
focusing in particular on the subcortex (thalamus and striatum) and 
archicortex (hippocampus). Unlike the cortical ribbon, which can be 
modelled as a 2D sheet, these structures are solid 3D objects. We there-
fore calculated the geometric eigenmodes using a tetrahedral mesh 
rather than the surface-based triangular mesh to account for the full 
3D geometry of the non-neocortical structures72, as outlined below.

We first used the probabilistic Harvard–Oxford subcortical atlas 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) to generate a volumet-
ric binary mask in each hemisphere for the thalamus, striatum and 
hippocampus. Voxels with a probability of 25% or more of belonging 
to these structures were included in the masks. We used FreeSurfer’s 
mri_mc function, which implements a marching-cubes algorithm, to 
construct a 2D surface by tessellating the volumetric masks, followed by 
the Gmsh software (https://gmsh.info/) to convert the 2D surface into 
a 3D tetrahedral mesh. We then used the LaPy python library to solve 
equation (1) on the tetrahedral mesh of each non-neocortical structure 
to obtain the eigenmodes and their corresponding eigenvalues. Finally 
we projected the eigenmodes in tetrahedral space back into the natural 
volumetric space via interpolation. Hence, the resulting eigenmodes 
spatially vary through the 3D voxels comprising each non-neocortical 
structure’s volume. For this part of the study we discarded the first 
constant mode and used the next 20 modes in our analyses.

Mapping the functional organization of non-neocortical 
structures
The signal-to-noise ratio of fMRI is generally weaker in non-neocortical 
structures than in the neocortex113. Moreover, fine-grained task activa-
tions are often hard to resolve in these smaller structures due to the 
limited resolution of fMRI and the spatial smoothing induced by com-
mon fMRI processing methods. Thus, to efficiently map the functional 
organization of the thalamus, striatum and hippocampus we used con-
nectopic mapping49 of the resting-state fMRI signals in each structure 
to obtain their dominant functional modes (often called gradients, 
although the patterns capture spatial variations in pointwise similari-
ties of FC profiles). This technique, and related procedures, have been 
extensively used in past work to study the functional organization of 
these structures114–116.

We applied connectopic mapping to the volumetric voxel-wise 
resting-state fMRI data of the HCP individuals following the procedure 
described in ref. 49. Specifically, for each individual and non-neocortical 
ROI (that is, thalamus, striatum and hippocampus) we constructed an 
ROI time-series data matrix, A, of size T × N, where T is the number of 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://gmsh.info/
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time frames and N is the number of voxels in the ROI. Similarly, for each 
individual we constructed the grey matter time-series data matrix, B, 
of size T × M, where M is the number of grey matter voxels outside the 
ROI. Because M is generally large (103 or above), we reduced the dimen-
sionality of B using singular value decomposition to construct the 
matrix 

∼
B  of size T × (T – 1). The connectivity fingerprint of every voxel 

within the ROI was then calculated using the Pearson correlation of A 
and B

∼
 to obtain the matrix, C, of size N × (T – 1). Similarity in the con-

nectivity fingerprints between each pair of ROI voxels was calculated 
using the η2 coefficient117, resulting in the matrix, S, of size N × N. The 
η2 coefficient represents the fraction of variance in one connectivity 
profile accounted for by the variance in another. We then took the 
average S across all individuals. A nonlinear manifold learning proce-
dure using the Laplacian Eigenmaps algorithm118 was applied to the S 
matrix of each ROI to calculate its eigenvectors and eigenvalues. The 
eigenvectors represent the functional patterns, termed functional 
gradients, of the ROI, ordered according to the variance in FC similar-
ity they explain. We only analysed the first 20 non-constant gradients 
to enable direct comparisons with the geometric eigenmodes. Typical 
applications of FC-based gradient analysis rarely consider more than 
the first five gradients49,119.

We analysed the correspondence between the geometric eigenmodes 
and functional gradients in each non-neocortical structure by taking 
their absolute spatial correlations, given that the signs of the modes 
and gradients are arbitrary. Moreover, the ordering of the geometric 
eigenmodes within the same eigengroup can change (Supplementary 
Table 1; for example, the first eigengroup can have order flips among 
modes 2–4) and hence one-to-one correspondence between the indices 
of geometric eigenmodes and functional gradients is not guaranteed. 
We therefore examined all possible pairwise correlations between the 
modes and gradients and evaluated correspondence with respect to 
the mode that maximally correlated with each gradient. The maximal 
order differences observed between geometric modes and functional 
gradients were one, eight and five out of 20 for the thalamus, striatum 
and hippocampus, respectively.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and preprocessed HCP data can be accessed at https://db.human 
connectome.org/. NeuroVault data can be accessed at https://neu-
rovault.org/. Source data to replicate the results of the study are openly 
available at https://github.com/NSBLab/BrainEigenmodes and https://
osf.io/xczmp/.

Code availability
Computer codes used to calculate the eigenmodes, analyse results 
and reproduce the figures of the study are openly available at https://
github.com/NSBLab/BrainEigenmodes.
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Extended Data Fig. 1 | Eigenmode basis sets. The basis sets from left to right 
are geometric eigenmodes, connectome eigenmodes, connectome 
eigenmodes using a connectivity matrix matching the density used by the 

exponential distance rule (EDR) eigenmodes, and EDR eigenmodes. Negative–
zero–positive values are coloured as blue–white–red.



Extended Data Fig. 2 | Reconstruction accuracy of resting-state FC 
achieved by different basis sets for different parcellation resolution. The 
basis sets are geometric eigenmodes, connectome eigenmodes, connectome 
eigenmodes using a connectivity matrix with density matched to that used by 

the EDR eigenmodes, and EDR eigenmodes. Schaefer100, Schaefer200, 
Glasser360, Schaefer400, Schaefer600, Schaefer800, and Schaefer1000 has 
100, 200, 360, 400, 600, 800, and 1000 parcels, respectively, across both 
hemispheres.
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Extended Data Fig. 3 | Difference in reconstruction accuracy of all 47 HCP 
task-contrast maps achieved by geometric eigenmodes and connectome 
eigenmodes for different parcellation resolution. Each row represents a 
different task contrast, which have been grouped here by broad types 
(Supplementary Information 2.1). wm = working memory. Red indicates 

superior performance for geometric eigenmodes. Schaefer100, Schaefer200, 
Glasser360, Schaefer400, Schaefer600, Schaefer800, and Schaefer1000 has 
100, 200, 360, 400, 600, 800, and 1000 parcels, respectively, across both 
hemispheres.



Extended Data Fig. 4 | Reconstruction accuracy achieved by geometric 
eigenmodes and PCA. (a) Reconstruction accuracy of resting-state FC.  
(b) Comparison of the reconstruction accuracy of all 47 HCP task-contrast 
maps, which have been grouped here by broad types (Supplementary 

Information 2.1). wm = working memory. Each row represents a different task 
contrast. Red indicates superior performance for geometric eigenmodes.  
The asterisk denotes the contrast (that is, the seven key HCP task contrasts) 
within the relevant task used to train the PCA.
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Extended Data Fig. 5 | Comparison of geometric eigenmodes and Fourier 
basis sets. a, Spatial maps of modes 1, 2, 3, 4, 10, 50 and 100 of six different 
Fourier basis sets with unit coefficients. The terms reg and irreg mean that the 
spatial wavelengths of the modes in the x-, y-, and z-directions are spaced in 

regular and irregular increments, respectively. See Supplementary 
Information 6 for details. b, Reconstruction accuracy of seven key HCP 
task-contrast maps and resting-state FC. See Supplementary Information 2.1 
for details about the contrast maps. wm = working memory.



Extended Data Fig. 6 | Classical neuroimaging approach of thresholding 
statistical maps. a, Simple one-dimensional example of how different 
thresholds only capture focal clusters of activations and ignore the underlying 

structured pattern of activations. b, Spatially embedded demonstration of the 
concept depicted in a using unthresholded and binarized thresholded maps.
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Extended Data Fig. 7 | Normalized power spectrum of each of the seven key HCP task-contrast maps. See Supplementary Information 2.1 for details about the 
contrast maps. wm = working memory.



Extended Data Fig. 8 | Power spectra of empirical task-activation maps and 
surrogate maps. a, Normalized mean power spectra of 47 HCP task-contrast 
maps (top) and 10,000 contrast maps from the NeuroVault database (bottom). 
The coloured lines correspond to power spectra of surrogate data following 
the application of spatial smoothing filters with varying full-width at 
half-maximum (FWHM). b, Average mean square logarithmic error (MSLE) as a 

function of FWHM between normalized mean power spectra of HCP and 
NeuroVault contrast maps and smoothed surrogate data. c, MSLE separately 
obtained between the power spectra of each of the 47 HCP and 10,000 
NeuroVault contrast maps and the smoothed surrogate data. Each row 
represents a different task-contrast map. The lines correspond to the FWHM 
where MSLE is minimum for each map.
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Extended Data Fig. 9 | Comparison of the wave and neural mass models in 
capturing time-lagged properties of fMRI data. a, Time-delay matrices from 
empirical data, simulated data using the wave model and simulated data using 
the neural mass model of the left hemisphere. Negative–zero–positive values 
are coloured as blue–white–red. b, Mean lags from the matrices in a (mean of 
each column) projected on the cortical surface. Negative–zero–positive values 
are coloured as blue–white–red. The scatter plots show the relationship of 

mean lags from empirical data and simulated data from the two models for  
180 brain regions. The red line represents a linear fit with Pearson correlation 
coefficient r and one-sided spin-test p-value, pspin, estimated from 10,000 
permutations. c, Similar to b but on the first principal component (PC1) of the 
matrices in a. The number above the surfaces (var) corresponds to the variance 
explained by the PC. d, Similar to c but on the second PC (PC2) of the matrices in a.



Extended Data Fig. 10 | Optimization of the wave model. The model is 
trained on 125 HCP individuals to find the optimal value of the parameter rs  
(in mm). Optimization performance compares data and model FC based on  
the following metrics: edge FC correlation, node FC correlation and FCD KS 

statistic. Higher edge FC correlation, higher node FC correlation and lower FCD 
KS statistic correspond to better model fit. We take rs = 28.9 mm as the optimal 
parameter as it leads to the minimum FCD KS statistic value.
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