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" Any action born of noise produces more noise, more confusion”
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Chapter 1

Introduction

The field of cognitive neuroscience has come a long way since the advent of mag-
netic resonance imaging (MRI) in the 70s. Since this pinnacle point, there has been
a boom of structural and functional findings of the human brain across the field.
The brain has long been split into three distinct parts: the cerebral cortex, the sub-
cortex, and the cerebellum. The subcortex, which simply translates to ‘beneath the
cortex’, accounts for around 25% of the entire brain. Since Korbinian Brodmann’s
renowned cytoarchitectural breakdown of the cerebral cortex at the start of the
20th century, our maps of the brain have been in constant evolution. In 1998 the
Federative Committee on Anatomical Terminology produced the Terminologia
Anatomica, the holy bible of anatomy, describing the 455 structures within each
hemisphere of the human subcortex (Federative Committee on Anatomical Termi-
nology, 1998). Of these 455 structures, only around 7-8% of them are represented in
MRI atlases. The cortex on the other hand has received the lion’s share of attention
throughout the history of cognitive neuroscience. This outer region of the brain
has been mapped vigorously and continuously, and most recently defined to be
made up of approximately 180 different regions (Glasser et al., 2016). So-called
‘corticocentric’ views have long dominated the field. The subcortex is therefore
rightly considered as terra incognita (Alkemade et al., 2013). The question is: why

has there been such an underrepresentation of a large portion of the brain?

Over the course of my research, it has become apparent that there are two likely
reasons for this underrepresentation. The first, is that it was long believed that the
subcortex is just not that important. As our understanding of the human brain
grew, it became more and more evident that it is the cerebral cortex that separates
us from the rest of the animal kingdom. This caused our search for the anatomy
and functions of the cortex to overshadow the deep brain. On the surface this
makes sense, other species of mammal have a cortex that seems inferior to ours,
while the subcortex appears to be relatively consistent in size and shape. This view
resulted in the idea that the subcortex does not drive any aspects of higher-level
cognition, and that our enormous cerebral cortex is what truly underpins our
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distinctly human aspects of behaviour and cognition (Bystron et al., 2008). But,
is this so? Is the subcortex merely a sluggish artifact of our primitive ancestry,
passed down as a tag along to our superior and uniquely human cerebral cortex?
Interestingly, when digging deeper researchers found that subcortical differences
in gene regulation between humans and other primates actually outweighs that
of the cortex (McCoy et al., 2017; Vermunt et al., 2016). There is also now an
abundance of evidence supporting the role of the subcortex in many aspects of
human cognition and that proper functioning of subcortical nuclei is required for
an array of adaptive and core day-to-day human behaviours such as learning,
action selection and memory (Aron and Poldrack, 2006; Fortin et al., 2002; Frank,
2006; Glimcher, 2004; Obeso et al., 2008; Sutton, Barto, et al., 1998). The subcortex
is not only highly interconnected within itself, including the brainstem, but also
with the cortex and cerebellum, with both extensive reciprocal and non-reciprocal
circuits (Alexander et al., 1986; Middleton and Strick, 1994). These more recent
findings mean the subcortex is only just beginning to be appreciated in the human

neurosciences.

The second reason for this underrepresentation is a practical one: the subcortex
is hard to get to. Both invasive and non-invasive techniques of studying neu-
roanatomy are inherently easier when studying the outer regions of the brain.
Subcortical structures are located deep within the brain, and their small size, bio-
physical properties and close spatial proximity to other nuclei make it challenging
to obtain high-resolution images (Mileti¢ et al., 2022). For methods such as MRI
and electroencephalography (EEG), the distance of the middle of the brain from
the measuring equipment outside of the skull makes acquiring a reasonable signal
difficult. Only recently has precise observation of the subcortex in vivo become
possible with these methods. Recent advances in neuroimaging and neurophysio-
logical techniques are beginning to shed light on the importance of the subcortex,
and it is likely that future research will increasingly focus on this often-overlooked

part of the brain.

More holistic approaches to brain mapping are difficult, advanced method-
ologies and equipment are needed to visualize the subcortex and cerebellum.
Even here, this thesis focuses on imaging the subcortex, and unfortunately mostly
disregards the cerebellum due to these difficulties. On the bright side, imaging
methods that can observe the subcortex are usually also able to image the cortex
with the same rigor. Throughout this thesis I bring together techniques that pro-
vide knowledge closer to the level of the whole brain. While I will emphasize

the role of the subcortex, it is important to state that the value of the cortex and
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Figure 1.1: MASSP structures (adapted from Bazin et al., 2020). The 17 subcortical structures
currently included in the parcellation algorithm in axial (A), sagittal (B), and coronal (C) views.

cerebellum in human cognition and behaviour is by no means underestimated.
Recent breakthroughs in neuroimaging and image processing have allowed the
development of superior atlases of the subcortex. The multi-contrast anatomical
subcortical structures parcellation (MASSP) atlas is one of the most updated maps
of the deep brain, supporting the ability to automatically parcellate grey matter
nuclei in the subcortex at an unprecedented scale and accuracy (see Fig 1.1; Bazin
et al., 2020). Now that it is possible to visualize these structures from in vivo scans,
we can more precisely analyze their roles in human behaviour.

The present introduction follows the themes of the chapters in this thesis. Now
that I have described the importance and underrepresentation of the subcortex,
we will move on to its structure and its roles in health and disease. I will mostly
discuss a subset of regions within the subcortex called the basal ganglia, a bundle
of structures involved in a wide range of motor, cognitive and limbic functions.
As given away by the title of this book, I will then focus more specifically on the
role of the subcortex in inhibition-related functions, namely response inhibition

and interference resolution.

The subcortex in health and disease

The subcortex is comprised of hundreds of structures, though the regions making
up the basal ganglia have received the most attention over the years. This group
of nuclei are involved in a wide range of functions, including response inhibition,
interference resolution and motor movement (see Fig 1.2). The nuclei making
up the basal ganglia include the dorsal striatum (caudate nucleus and putamen),
ventral striatum (nucleus accumbens and olfactory tubercle), subthalamic nucleus
(STN), substantia nigra (SN) and the globus pallidus (GP). One way in which the
basal ganglia interact with the cortex is through a series of direct, indirect, and
hyperdirect pathways. These pathways are essential for regulating the flow of
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information between the cortex and the basal ganglia and for coordinating the
execution of movements. The direct pathway, which is mediated by neurons in the
striatum that express dopamine D1 receptors, facilitates movement by funneling
information from the cortex to the globus pallidus interna (GPi) and substantia
nigra pars reticulata (SNr), reducing their activity which in turn, disinhibits the
thalamus. This pathway promotes the initiation and execution of movement by
exciting motor cortex regions that are responsible for motor output. The indirect
pathway, which is mediated by neurons in the striatum that express dopamine
D2 receptors, is thought to inhibit movement by disinhibiting the globus pallidus
externa (GPe), which in turn inhibits the thalamus. The indirect pathway serves
as a brake on movement, preventing unwanted or inappropriate actions. The
hyperdirect pathway, which connects the cerebral cortex directly to the STN, is
suggested to provide rapid and direct inhibition of movement by bypassing the
indirect pathway and triggering GPi/SNr activation. Overall, these pathways
work together to maintain a normal state of voluntary movement.

One of the first recorded associations between the basal ganglia and an abnor-
mal state of voluntary movement came in 1912 (Wilson, 1912). The specific type of
abnormal movement described, dyskinesias, was attributed to lesions in the basal
ganglia. The neurologist who made this connection, Samuel Alexander Kinnier
Wilson, aptly named the disease that caused this Wilson’s disease. Since then, the
abnormal movements associated with Wilson’s disease have been more closely
tied to the putamen and GP (Lorincz, 2010; Yousaf et al., 2009). Additionally, many
studies have shown that dysfunction in the cortico-basal-ganglia pathways can
lead to motor and cognitive deficits, including impairments in response inhibi-
tion (Caballol et al., 2007; Chang and Guenther, 2020; Chudasama and Robbins,
2006; Salmon and Filoteo, 2007). For example, degeneration of or damage to
the basal ganglia can result in hyperactivity in the indirect pathway. This is one
of the main mechanisms thought to underly some of the observable symptoms
of Parkinson’s disease (PD). PD is a progressive and chronic neurodegenerative
disease, characterized by the degeneration of dopamine-producing neurons in the
SN. This degeneration can lead to disruptions in the balance between the direct
and indirect pathways, resulting in motor impairments such as rigidity, tremors,
and bradykinesia (Burke and O’Malley, 2013; Tinaz et al., 2011). One observable
side effect of PD is an impairment in response inhibition (Gauggel et al., 2004; Ye
et al,, 2015). The STN has long been implicated as an important node underlying
successful response inhibition. One effective symptomatic therapy for PD has
leveraged this by targeting the STN using deep brain stimulation (DBS). DBS
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Figure 1.2: The cortico-basal-ganglia model (adapted from Song et al., 2023). a) Anatomical
depiction of the connections between the cortex and subcortex. The loop connects parts of the
cortex, such as the somatosensory and motor cortex, to nodes within the basal ganglia, such as the
STN and SN, and the thalamus. b) Diagram indicating the connections between different nodes of
the direct, indirect, and hyperdirect pathways. CTX, cortex; GPi/e, globus pallidus interna/externa;
MC, motor cortex; SC, somatosensory cortex; SN, substantia nigra; SNc¢, SN pars compacta; SNr,
SN pars reticulata; STN, subthalamic nucleus; STR, striatum; THL, thalamus.
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has also shown promise in another basal ganglia disease: obsessive compulsive
disorder (OCD). OCD is a chronic psychiatric disease in which a person presents
with uncontrollable thoughts or behaviours that they feel the urge to repeat over
and over again. The manifestations of PD and OCD are very different, but their
symptoms can both be improved by similar treatments: DBS of the STN. The
chapters of this thesis will cover the topic of STN function in further detail, for
now it is only important to note that its exact functions have been difficult to pin
down, but it is evidently involved in a multitude of motor, cognitive and limbic
functions.

Many other neurological and psychiatric disorders have been associated
with both abnormalities in the basal ganglia and in inhibition-related functions.
Schizophrenia, a psychiatric disorder, has been linked to volume differences in
the thalamus, GP and the striatum, which may contribute to symptoms such as
delusions, hallucinations, and cognitive deficits (Kapur, 2003; Okada et al., 2016;
Van Erp et al., 2016). Attention deficit hyperactivity disorder (ADHD), in which
persons present with difficulties in controlling attention and impulses, has also
been associated with volumetric differences in regions of the basal ganglia (Qiu
et al., 2009). Both of these disorders are affected with underlying deficiencies in
inhibition-related functions (Matzke et al., 2017; Nigg, 2001). Finally, dystonia,
a movement disorder, is characterized by sustained and intermittent muscle
contractions that can cause muscle spasms, abnormal or painful contractions
and tremors (Albanese et al., 2013). These motor abnormalities are thought
to be a result of the overactivation of the direct pathway, though the exact
pathophysiology is unknown. As someone with dystonia, the roles of the nuclei
within these pathways have been of particular interest to me. What has become
clear, is that there is a delicate homeostasis of excitation and inhibition within the
basal ganglia that is tightly controlled (Hallett, 1998; Hallett, 2006). Understanding
the role of specific subcortical nuclei is therefore imperative to develop effective
treatments against these diseases. To be able to understand their roles, I employed
specific tasks aimed at stimulating different aspects of inhibition. In the section
below I will describe these inhibition-related processes in more depth and how
we examine them experimentally.

Inhibition-related functions

Inhibition-related functions can be deconstructed into three main categories (Nigg,
2000): (1) prepotent response inhibition, (2) resistance to distractor interference,
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and (3) resistance to proactive interference. While on the surface these constructs
display a conceptual overlap, structural equation modelling later suggested that
the latter was not suited to this umbrella of inhibition-related functions (Friedman
and Miyake, 2004). I therefore limit the scope of this work to the two formers. It
should be noted that the nomenclature of these constructs is inconsistent across
the field of psychology. Prepotent response inhibition also goes by the terms motor
inhibition, global inhibition, or behavioural inhibition. Here we will refer to it
as response inhibition. Resistance to distractor interference also has a long list of
synonyms, including conflict resolution, selective inhibition, cognitive inhibition,
and interference resolution. Here we will use the latter. Response inhibition refers
to the ability to inhibit prepotent or automatic responses in favour of a more appro-
priate one. Interference resolution is the ability to suppress distracting information
that is irrelevant to the task at hand. These processes have been associated with
multiple behavioural traits in humans such as impulsivity (Jauregi et al., 2018),
sensation seeking (Andrew et al., 2015), and agreeableness (Jensen-Campbell et al.,
2002). While inhibition-related functions are only a small subset of functions that
the brain carries out, I believe that understanding how they are implemented is
of huge importance to developing treatments for related disorders. Deficiencies
in one or both of these processes is postulated to underly many manifestations of
Parkinson’s disease, obsessive compulsive disorder, schizophrenia, and dystonia.

There are a wide range of psychiatric and neurological subcortical diseases that
exhibit altered capacities in inhibition-related functions. On the implementation
level, the cortico-basal-ganglia loop is thought to be crucial for the proper func-
tioning of these processes. Inhibition was for a long time looked at as a unitary
construct, but their taxonomy as related but separable mechanisms was later for-
malized (Friedman and Miyake, 2004; Nigg, 2000). These mechanisms, response
inhibition and interference resolution, as well as other aspects of cognitive control,
enable individuals to engage in adaptive behavior in everyday life. As previously
mentioned, response inhibition refers to the ability to inhibit ongoing actions.
Imagine you are reaching for a hot pan, when an internal realization or external
cue triggers the stopping process, allowing you to inhibit this already initiated
action. Such a mechanism is commonly assessed using the stop signal task (SST).
The SST is a two-alternative choice reaction time task, where inhibition is assessed
by the ability to forego an ongoing action (Logan and Cowan, 1984; Verbruggen
et al., 2019). There are two trials types in the SST, go trials, where individuals are
instructed to respond to a go stimulus as quickly as possible, and stop trials, where

individuals are instructed to withhold their response if they see a stop stimulus
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(a) Stop-signal task (b) Complete horse-race model
Go trial: Go right Go left

signal-respond RT distribution —> / go RT distribution

Stop trial: Stop right Stop left

> [+ = —
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]
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e N
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Figure 1.3: The stop signal task and the associated horse-race model (adapted from Sebastian
etal., 2018). a) The experimental design of the stop signal task. On a go trial, participants only
see a go stimulus and are required to respond. On a stop trial, a stop stimulus is presented
after the go stimulus and participants are required to withhold their response. b) The complete
horse-race model treats go RT and stop-signal reaction time (SSRT) as independent random
variables representing the finishing times of the go and stop processes, respectively.

(see Fig 1.3). The stop stimulus is only ever shown after the go stimulus. Go trials
dominate the task, usually at a 3:1 ratio. This primes individuals to expect go trials,
and find stop trials more salient, an important aspect of the task. One method of
formalizing behaviour during decision making tasks such as the SST, is cognitive
modelling (see Fig 1.3). Behaviour during this task specifically can be conceptual-
ized as a race between two competing but independent processes: a go process that
is triggered upon presentation of the go stimulus, and a stop process that is trig-
gered by the presentation of a subsequent stop stimulus. If the go process finishes
first, the response is implemented; if the stop process finishes first, the response
is inhibited (Logan and Cowan, 1984). This is called the horse-race model. Due
to the nature of the task, generally only around 12.5% of all trials are successful
stop trials. This is not a large issue for behavioural studies as you can simply
increase the number of trials with minimal consequence, but for imaging studies
this can cause considerable problems. Importantly, inhibition success is tracked
and modified by adapting the time between presentation of the go stimulus and
stop stimulus, known as the stop signal delay (SSD). This ‘staircase” procedure
keeps participants inhibition success at around 50%. The race model allows us
to estimate the stop signal reaction time (SSRT), a measure of the latency of the
unobservable stopping response. Most methods of SSRT estimation produce only
a summary measure, and do not integrate the spread of the RT distribution. I
believe that methods that use the reaction time data from the SST more thoroughly
and produce a distribution of SSRTs provide greater insight into behaviour in this
task (Matzke et al., 2017; Matzke et al., 2013).
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Our second inhibition subtype, interference resolution, describes the ability to
suppress irrelevant or distracting information. Such an ability is important in
daily life, as it allows us to focus on task-related sources of information and filter
out unimportant internal or external stimuli. For example, it has been shown that
bilingual individuals possess better conflict monitoring abilities than those with
only a single language, most likely due to the practice in inhibiting competing
words in different languages (Abutalebi et al., 2012; Hernandez et al., 2010).
Several tasks are commonly used to assess interference resolution including the
Simon, Flanker and multi-source interference tasks (MSIT; Bush et al., 2003; Eriksen
and Eriksen, 1974; Simon, 1969). In this thesis, I focus on the latter, the MSIT, which
combines aspects of both the Simon and the Flanker effect. The MSIT involves
identification of the number that is the odd one out in series of three numbers,
where the other two numbers are the same (see Fig 1.4). The paradigm is therefore
a three-alternative choice task, where participants are required to respond with
the identity of the unique number. As these numbers are mixed, a Simon effect
arises, whereby the position of the number in the sequence interferes with the
processing of its identity. Moreover, due to the two non-unique numbers acting as
distractors, a Flanker effect arises. The Flanker effect causes interference due to the
distractor numbers biasing the responder towards the wrong numerical response.
These effects gives rise to a mechanism of selective inhibition, forcing participants
to inhibit a response biased by one, or both of these interference effects. There
have been no previous efforts to model the behaviour in the MSIT. Here I apply a
model-based cognitive neuroscience approach to these subtypes of inhibition by
applying a novel method of cognitive modelling to the MSIT. I combine ultra-high
field MRI (UHF MRI) with these advanced modelling techniques to shed light on
the mechanisms underlying inhibition-related functions. The main advantage of
model-based methods is the ability to ascribe specific processes to specific regions
of the brain. The two tasks described above have been used extensively in both
healthy individuals and clinical populations to study the neural and cognitive
mechanisms underlying these types of inhibition. These subtypes of inhibition
have been studied relatively independently, here I attempt to formalize their

similarities and differences.

Imaging the subcortex

It should be clear now that the subcortex is important for normal functioning of
inhibition behaviours, as well as daily life in general. One main method I use

to further our knowledge of the subcortex, both structurally and functionally, is
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a) Congruent b) Incongruent
No interference effects Mixed interference effects
1,100 221
No Simon effect: — 4 - X
No biases away from F! lan}(er effect: \
correct response ‘1’ ‘2’ distracts from Simon effect:
No Flanker effect: the correct response Position bi :
ns . Q0 osition biases
0’ is not a valid . 2
incorrect response ‘3
response

Figure 1.4: Examples of stimuli in the MSIT. In both examples, "100” and '221’, the correct response
is '1’. a) One of three possible stimuli in the congruent condition showing that there are no
interference effects. b) One of 12 possible stimuli in the incongruent condition showing how the
Flanker and Simon effects arise.

MRI. A key advantage of MRI is that it allows us to image in the human brain
in vivo. There are three different levels of scale at which one can attempt to map
the anatomy of the different regions of the brain: the macroscopic, mesoscopic
and the microscopic scales (Forstmann et al., 2017). MRI scanning can span
both the macroscopic (on the scale of centimeters) and mesoscopic (on the scale of
millimeters) levels, though cannot yet in most cases with appropriate signal, image
at the microscopic level (on the scale of micrometers). With UHF MRI the scale and
accuracy at which we can image both the cortex and subcortex is becoming ever
more improved. The benefit of UHF MRI compared with lower field strength MRI
is evident (Cho et al., 2008; Isaacs et al., 2020; Kerl et al., 2012). As field strength
increases, the signal-to-noise (SNR) increases linearly with it (Edelstein et al., 1986).
This is important, especially for the subcortex, as the SNR decreases substantially
in deeper parts of the brain due to the distance of the regions from the head coils.
In addition to an increase in SNR, the contrast-to-noise ratio (CNR) also increases
with field strength due to the larger difference in relaxation times between grey
and white matter (van der Zwaag et al., 2016). The gain in signal can be used
as a tradeoff with other MR parameters, such as spatial resolution or acquisition
time. This propensity for increased spatial resolution is especially helpful for the
subcortex, due to the size and spatial proximity of many of its nuclei. The basal
ganglia, for example, contains nuclei that are notoriously densely packed and, as
with the STN, have volumes as little as 80 mm? (Alkemade et al., 2020a). With
structural imaging, where the average spatial resolution is approximately 1 mm?3,
it is possible to acquire enough voxels within these structures to know where they
are. In functional imaging, where the standard spatial resolution is approximately
27mm?3, it would only be possible to acquire around 3-4 voxels within the STN.
Moreover, this has not yet taken into account partial voluming effects, meaning the

10
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signal within each voxels is likely a mixture of multiple structures, a ‘subcortical
cocktail” if you will (De Hollander et al., 2015).

The field of functional MRI is almost exclusively based on the qualitative as-
sessment of neural activity, namely, the blood-oxygen level dependent (BOLD)
response. The basic assumption of BOLD imaging is that when regions of the
brain are recruited to perform a function, they will require an increased blood
flow of oxygenated blood, to match the neuronal energy demand. This is known
as neurovascular coupling. As the neural activity will also increase oxygen con-
sumption in the area, the observed BOLD response is a mixture of both processes;
increased presence of oxygenated blood (increasing signal) and increased oxygen
consumption (decreasing signal). As one could expect, the BOLD response is
therefore also heavily dependent on the vascular properties and organization of a
particular region. The interpretation of the BOLD response relies on the assumed
linearity between the hemodynamic response function (HRF) and neural activity.
This method, although the standard in the field, is by no means perfect, as will be-
come apparent throughout the work in this thesis and the discussion that follows.
Although multiple studies have at least partially confirmed the linearity of the
relationship between the HRF and neural activity (Liu et al., 2010; Logothetis et al.,
2001), these findings have almost exclusively focused on the cortex (Kim and Ress,
2017; Taylor et al., 2018). As will become incessantly apparent throughout this
thesis, the subcortex is underrepresented. Few studies have attempted to charac-
terize the effect of vasculature on the HRF in the deep brain, though differences
between the cortex and subcortex have been found (Duvernoy, 1999; Lewis et al.,
2018; Tatu et al., 1998; Wall et al., 2009). Subcortical BOLD responses appear to
peak earlier than those observed in the cortex and the post-stimulus undershoot
normally associated with the canonical HRF is not always seen (Kim et al., 2022).
Physiological noise is also more of an issue in the subcortex due to its proximity
to large vessels (Singh et al., 2018). The cardiac system produces artefacts due to
changes in blood flow and physical pulsation of vessels (Dagli et al., 1999; Kriiger
and Glover, 2001), while the respiratory system produces artefacts due to arterial
pressure changes and effects on BO (Raj et al., 2001; Wise et al., 2004). Due to all of
this, accurately imaging the subcortex requires numerous technical considerations.

To overcome at least some of these limitations, I have developed and imple-
mented protocols tailored to the subcortex and used advanced processing steps to
aid in reducing aspects like physiological noise (e.g., RETROICOR; Glover et al.,
2000). Additional promising technical steps have allowed us to improve the signal

we acquire, or at least lower the scanning time required. For example, partial
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Fourier imaging allows us to directly measure only a subset of k-space, while
maintaining the ability to reconstruct the entire image. While in theory only 50% of
k-space data needs to be collected, in practice functional imaging requires around
75%. Another method that I use to cut down the acquisition time is multiband.
Multiband allows us to excite multiple slices of a volume at once, giving the op-
portunity to increase spatial or temporal resolution. Parallel imaging techniques
such as GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) can
similarly aid in cutting down the acquisition time. Of course, these all come with
their own set of drawbacks, usually in the form of a signal-to-noise penalty. A
careful balance between these parameters has given us the ability to image the

subcortex in unprecedented detail.

Based on all of this, it is obvious that imaging the subcortex is a difficult feat. It
is therefore not surprising that controversies have arisen around MRI findings of
subcortical structures. The cortico-basal-ganglia model described in Fig 1.2 is based
on countless research into the anatomy of action selection and inhibition. Recent
advances in UHF methods have however, brought these models into dispute
(Hollander et al., 2017; Isherwood et al., 2023a; Mileti¢ et al., 2020). Researchers
investigating human behaviour are often limited to either mathematical models
describing behavioural data or statistical models describing activity patterns in
the brain. These endeavors focus on different levels of analysis (Marr, 1982),
but are rarely combined. In terms of these levels of analysis, one can describe
a problem in the algorithmic sense, where we focus on the process behind the
computation (using mathematical models). On the implementation side, we focus
on where the computation takes place in the brain (by analyzing brain patterns).
To make the most of both the behavioural and neural data, I attempt to associate
the algorithmic and implementational levels. Such associations can provide way to
mechanistically interpret our findings, something that standard analysis methods

in functional imaging or behavioural analysis cannot do.

Outline thesis

The aim of this thesis is to elucidate the underlying mechanisms that govern
response inhibition and interference resolution within the human subcortex. To
achieve this objective, I used an interdisciplinary approach that integrated methods
of meta-analyses, structural and functional UHF MRI, and cognitive modelling
techniques. Specifically, I used model-based methods to attempt to garner new

perspectives on how these subtypes of inhibition are implemented in the brain,

12
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and to what extent they overlap on a behavioural and computational scale. A
core aim is that the outcomes of this research can be leveraged to advance our
understanding of subcortical functioning, and that the techniques I developed can
serve as a valuable resource for the research community in the years to come. I
will now provide a short overview of each chapter of the thesis.

Chapter 2 marks the beginning of our endeavor to uncover the intricacies
of accurately imaging the human brain. We started by creating an up-to-date
catalogue of MRI databases that focus on the neurotypical population. We wanted
to extract quantitative measures of image quality across different databases, to
create an accurate outlook of the state of the MR field. The chapter evidences the
benefits of UHF MRI in brain imaging, particularly to the subcortex, and discusses
the tradeoffs between parameters such as acquisition time, spatial resolution and
SNR. The chapter also highlights the huge gains that open-access data sharing
can provide to the field and the choices that researchers face when balancing data
quantity and quality.

In chapter 3, we extend our structural investigation into the deep brain, focusing
on age-related changes across the adult lifespan and the composition of 17 subcor-
tical structures. The chapter defines these regions in terms of approximate iron
and myelin contents and their morphometry. We acquire novel insights into the
heterogeneity of these complex regions including locational changes, which have
large consequences for general use atlases of the human subcortex. The chapter
emphasizes the need to accurately map subcortical structures for both structural
and functional inference and outlines the vast array of information we can gain
from tailored MR sequences.

In chapter 4, we delve into the existing literature that examines response inhibi-
tion and interference resolution. This allowed us to gain a comprehensive under-
standing of the knowledge gaps within the field, providing a valuable foundation
for our own research. While the previous chapters focused on our structural
understanding of subcortex, we here change perspective and investigate their
functional counterpart. To do this, we employed an activation likelihood estima-
tion methodology to aggregate previous functional studies of inhibition-related
functions, focusing on studies that adhere to a strict set of criteria. Our results
indicate a relatively unharmonious functional map of inhibition across the research
field, citing large differences in regions between different meta-analyses as well as
between various subtypes of inhibition. Although we answered questions relating
to inter-individual similarities and differences between response inhibition and

interference resolution, many questions remained unanswered.
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To complement the inter-individual results of our meta-analysis, chapter 5
outlines our intra-individual investigation into response inhibition and interfer-
ence resolution. Using the information from our previous chapters, we designed,
streamlined, and optimized a functional study that provided us with state of the
art structural, functional and behavioural data in both response inhibition and
interference resolution tasks. Our methodology allowed us to compare the sub-
types of inhibition, while minimizing individual differences using intra-individual
comparisons. We found that not only do response inhibition and interference
resolution tasks have relatively little behavioural overlap, but that their implemen-
tation in the brain is also rooted in distinct networks. By advancing our analysis
with a model-based technique, we also show differences in computational aspects
of the two inhibition-related functions.

Our exploration of response inhibition culminates in chapter 6, where the out-
comes of our functional and behavioral investigations are merged, and four addi-
tional SST datasets are reprocessed and reanalyzed to shed light on the inconsis-
tencies present within the field. We take advantage of open-access data to combine
data points from multiple datasets without the need to incorporate only summary
measures. We found that, in contrast to historical models of response inhibition,
successful inhibition does not appear to rely on the canonical cortico-basal-ganglia
pathways. We instead found that failures of response inhibition drive the activa-
tion of multiple subcortical nodes previously theorized to underpin successful
inhibition. These findings, mixed with other literature on the topic, suggest that
there is much more investigation needed into the networks that underly successful
response inhibition in the human subcortex.

Finally, chapter 7 provides a comprehensive summary of the key findings
presented in this thesis and elucidates their implications for future research. I
follow this with a contextual discussion of these findings, presented in relation to
recent publications.
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Chapter 2

Quantity and quality: Normative open-access neuroimaging
databases

This chapter is published as:
S.]. S.Isherwood, P-L. Bazin, A. Alkemade, and B. U. Forstmann (2021a). Quantity

and quality: Normative open-access neuroimaging databases. PLOS ONE 16.3,
pp. 1-30. DOI: 10.1371/journal .pone.0248341.
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Chapter 2

Abstract

The focus of this article is to compare twenty normative and open-access
neuroimaging databases based on quantitative measures of image quality,
namely, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). We further the
analysis through discussing to what extent these databases can be used for the
visualization of deeper regions of the brain, such as the subcortex, as well as
provide an overview of the types of inferences that can be drawn. A quantitative
comparison of contrasts including T1-weighted (T1w) and T2-weighted (T2w)
images are summarized, providing evidence for the benefit of ultra-high field MRI.
Our analysis suggests a decline in SNR in the caudate nuclei with increasing age,
in T1w, T2w, qT1 and qT2* contrasts, potentially indicative of complex structural
age-dependent changes. A similar decline was found in the corpus callosum of
the Tlw, qT1 and qT2* contrasts, though this relationship is not as extensive as
within the caudate nuclei. These declines were accompanied by a declining CNR
over age in all image contrasts. A positive correlation was found between scan
time and the estimated SNR as well as a negative correlation between scan time
and spatial resolution. Image quality as well as the number and types of contrasts
acquired by these databases are important factors to take into account when
selecting structural data for reuse. This article highlights the opportunities and
pitfalls associated with sampling existing databases, and provides a quantitative
backing for their usage.
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2.1 Introduction

The purpose of this article is to summarize and compare some of the most promi-
nent existing normative open-access structural magnetic resonance imaging (MRI)
databases from a variety of research institutions, including our own Amsterdam
ultra-high field adult lifespan (AHEAD) database (Alkemade et al., 2020a). The
need for and benefit of open-access imaging databases has been emphasized in
a number of recent reviews (Eickhoff et al., 2016; Madan, 2017; Milham et al.,
2018). The community-wide movement towards open-access data sharing in the
last decade is expected to massively advance the neuroimaging field and share
the wealth of available data between researchers and institutions. Some of these
benefits are obvious, such as the financial advantage of data sharing and the reuse
of data between institutions. The re-analysis of acquired MR images also serves
to aid reproducible research and provide multi-party levels of quality control.
On top of this, the ability of new processing pipeline tools and analyses meth-
ods benefit greatly from the larger sum of data that the software can be trained
on. It is important to acknowledge that large-scale data-sharing comes with its
own disadvantages. Analyses based on post-hoc hypotheses and ‘data-mining’
can lead to spurious false positive findings (Poldrack and Gorgolewski, 2014).
Due to the sheer number of possible analyses in larger databases this problem
grows increasingly likely. Data acquired within a specific framework and col-
lected with a specific purpose may affect the extent to which this data can be
used for separate analyses (Verheij et al., 2018). The questions investigated by
the numerous neuroimaging databases described in this paper are diverse, with
some attempting to bridge the gap between genetic influences and brain structure
and others looking at the impact of the environment on the development of the
human brain (Holmes et al., 2015; Nooner et al., 2012; Van Essen et al., 2013). To
this end, there are already a multitude of findings and publications arising from
the data made accessible through these databases (Betzel et al., 2014; Chan et al.,
2018; De Hollander et al., 2015; DuPre and Spreng, 2017; Geerligs et al., 2015;
Glasser et al., 2016; Gratton et al., 2018; Holmes et al., 2012; Huntenburg et al.,
2017; Mikhael et al., 2018; Pagliaccio et al., 2015; Wang et al., 2015; West et al.,
2019). To our knowledge, a systematic comparison of these data, in terms of image
quality, has not yet been published. This information is invaluable for the users
of such databases to determine what conclusions they can reliably draw from
the wealth of information provided. Through this analysis, we aim to aid in the

accurate and valid use of the vast imaging data researchers have at their fingertips.
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Additionally, though many of these databases contain functional (f)MRI data (both
resting state and task-specific), we will focus instead on brain anatomy and the
inferences that can be made from structural imaging techniques. For comparisons,
we will use quantitative measures of image quality, namely the signal-to-noise
ratios (SNRs) and contrast-to-noise ratios (CNRs) associated with the MR images
provided by each database. In short, the SNR infers the propensity of an MR
image to delineate brain structures and detect pathology (Michaely et al., 2007). By
providing these estimates for each database, we are giving a quantitative measure
of two dimensions; image quality (SNR) and contrast (CNR). An increase in these
quantitative measures improve the qualitative ability of e.g., manual or automatic
parcellation. The CNR gives a valuable inference on the ability to spatially resolve
detail in an image. Therefore, using different databases with varying CNRs may
result in different outcomes depending on the reason they are being used (e.g.,
segmentation, volumetric measurements, delineation of cortical folding). SNR in-
herently provides an estimate of the noise level in a structure or image and higher
image quality is both quantitively and qualitatively useful. Of course, the SNR is
often used as a trade-off parameter to gain improvements in another aspect of the
imaging method such as resolution, scan time, field of view (FOV) and indirectly,
sample size. For example, a database with a low CNR and a large sample size
may not be pragmatic to use for the parcellation of subcortical nuclei but would
provide accurate volumetric whole brain estimates of a population. Conversely,
a database with a high CNR and small sample size may not be able to provide
reliable information at a population level but may deliver an insight into the
substructure of a single region. Thus, larger databases with vast and multimodal
data of each individual have already provided population-level information on
cortical arrangement as well as the impact of genetics and the environment on the
human brain (Bischof and Park, 2015; Blesa et al., 2016; Cheng et al., 2020; Glasser
et al., 2016; Lyu et al., 2020; Strike et al., 2019) which would not be possible in
smaller databases.

There are currently at least 71 whole-body 7T MRI scanners worldwide
(Forstmann et al., 2017). Given the number of articles now specifically comparing
3T and 7T imaging of neurological disease, it is evident that higher field strengths
are beneficial to answer questions in both the cognitive and clinical neurosciences
(De Graaf et al., 2013; Moon et al., 2016; Noebauer-Huhmann et al., 2015; Springer
et al., 2016; Tallantyre et al., 2009). The signal-to-noise ratio (SNR) increases in
an almost linear fashion with field strength (Collins and Smith, 2001; Vaughan
et al., 2001) giving the potential for both greater spatial resolution and a higher
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CNR. Some of the databases described here have taken advantage of this, but the
cost of use of these higher field strengths and their limited availability make it
challenging for many large-scale studies or institutions without access. Thus, the
trade-off between the quantity and quality of acquired MR data arises.

The gains from ultra-high field MRI (UHF MRI) are especially important when
investigating deeper regions of the brain (e.g., subcortex). UHF MRI can provide
reduced partial volume effects due to increased spatial resolution, allowing for the
visualization of finer anatomical detail (Federau and Gallichan, 2016; Liisebrink
etal., 2013). Historically, the lack of signal and contrast within the deep brain is the
reason for the only recent development of subcortical maps in vivo (Johansen-Berg,
2013; Keuken and Forstmann, 2015). UHF MRI and its accompanying increase in
SNR and contrast capacity will aid in the understanding of the structure of these
deeper structures. Around 93% of the grey matter nuclei within the subcortex,
making up almost a quarter of the total human brain volume, are currently not
represented in standard MRI atlases (Alkemade et al., 2013; Evans et al., 2012).
Some subcortical structures can be delineated through the use of these atlases, such
as parts of the striatum, but most are too small to be manually or automatically
parcellated (Levitt et al., 2013). Iron-rich structures including regions constituting
the basal ganglia are difficult to delineate on standard T1w scans (Priovoulos et al.,
2018; Visser et al., 2016), but specialised sequences can take advantage of the larger
T2* contrast differences at higher field strengths (Cho et al., 2011). For example,
the abundance of iron in the substantia nigra (SN) and subthalamic nucleus (STN)
make it an ideal target for T2* and SWI contrasts which can take advantage of
these differences (Alkemade et al., 2017; Kerl et al., 2012; Schifer et al., 2012; Shroff
et al., 2009). The delineation of these structures is made even harder by the limited
SNR, due to the larger distance from the head coils (Hollander et al., 2017).

Methods to improve image quality in MRI are not only limited to increasing
the field strength of the scanner. The gradient strength, radiofrequency coils and
use of optimized sequences also have a marked effect on acquisition efficiency.
One such example is the Connectom scanner, of which there are currently only
three in the world, which benefits from gradient strengths 3-8 times that found
in standard 3T scanners. As with field strength, this factor facilitates both an
increase in spatial resolution and a reduction scan time. Though previous studies
have indicated the advantage of non-standard sequences (e.g., T2*, QSM, SWI),
owing to their capacity to increase the number of observable structures and to
observe smaller brain regions (e.g., fibre tracks, nuclei) in deeper areas of the
brain (Deistung et al., 2013; Kerl et al., 2012). The vast majority of databases
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focus on more standard T1w and T2w images, which are essential for volumetric
calculations and distinguishing between grey and white matter regions but do
not have the ability to quantify or delineate smaller and adjacently located nuclei
(Keuken et al., 2014; Trutti et al., 2019).

2.2 Methods

The purpose of this article was not to present and analyse an exhaustive list
of all currently available open-access neuroimaging databases, but to provide
quantitative measures and accessing instructions for some of the most notable
ones that meet our criteria. Most of the databases were identified using a structural
MRI database list kindly provided from a cited paper which can be accessed here:
https://github.com/cMadan/openMorph (Madan, 2017). Two of the databases
were identified as they were associated with the authors of this article (Alkemade
et al., 2020a; Forstmann et al., 2014) and a further two databases were identified
from the literature (Haxby et al., 2011; Tardif et al., 2016). All data was freely
accessed in November 2018 and downloaded using the accessing instructions in
Table A.1.

The selection criteria of the databases presented in this article were based on
three characteristics. Firstly, the databases had to be normative, that is, made up of
individuals that were reported as healthy at the time of scanning with no clinical
presentation of neurological, psychiatric, neurodegenerative or peripheral disease.
Secondly, the databases had to be a collection of curated images, uni- or multi-
modal, that were acquired to be of similar composition (based on sequences and /or
sites) to that of other images in the database. The reason for this criterion is that
we assess five subjects randomly from each database and therefore must be sure
that their quality reflects that of the rest of the database accurately. Thirdly, these
databases are open-access to the extent that they are accessible to the worldwide
scientific community completely free of charge and without access barriers. Such
access barriers include, for example, memberships, a specific institutional position
(e.g., professorship) or the requirement of some type of institutional infrastructure
(e.g., Federalwide Assurance).

The quality of the images acquired through the use of MRI are characterized
by three main components: the acquired spatial resolution, the signal-to-noise
ratio (SNR) and the contrast-to-noise ratio (CNR). These three aspects are in turn
governed by the specific acquisition parameters used when obtaining the MR
images. In the analysis presented here, the SNR was calculated by measuring the

mean signal at the most posterior part of the corpus callosum (CC) and dividing it
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by its standard deviation. We also calculated the SNR of a grey matter region,
namely the caudate nuclei (CN). To provide a measurement of CNR for each
image, we computed the ratio of the difference in signal to the difference in noise
of the CC and left and right caudate nuclei (LCN and RCN, respectively). These
regions were chosen as we opted to compare the signal between a white matter
area (CC) and a grey matter area (CN) of deeply situated brain regions. The SNR
was calculated in both the left and right CN as a quality control step, under the
assumption that these would yield similar SNR estimates. To test this, we used
the programming language R and the ‘BayesFactor” package to compute both
frequentist and Bayesian t tests, respectively (Morey and Rouder, 2015; Team R.
Core., 2019). The latter allows us to provide evidence for the null hypothesis (that
there is no difference in signal between the left and right caudate nucleus). In
order to have a singular SNR measure for both CN, we used the summation of the
signal from 27 voxels from both regions and divided it by the standard deviation
of the overall 54 voxels. This results in an SNR that is different than simply
taking the mean of both SNR measurements for each CN. Equation 2.1 shows the
calculation for which CNR values were computed. jicc indicates the mean signal
of the CC, yucy indicates the mean signal of both CN. ¢ specifies the standard
deviation of the CC and o ¢y specifies the standard deviation of both CN.

CNR = _Hcc —HeN @.1)

Voee? + oen?

As many of the databases described here do not report SNR estimates, we
decided to download a sample of the available data from each database and
compute these indices to be able to make accurate comparisons between them.
Importantly, even when SNR estimations were calculated by the databases, we
performed a re-estimation to ensure that all SNRs presented here were estimated
using the same protocol. The SNRs can be estimated using different structures
and therefore derive values that are not always comparable between different
procedures. To do this, five subjects from each database were selected at random
and their available images downloaded. The SNRs and CNRs were calculated for
each available contrast within each database. Databases that include large age
ranges were split into age groups of young (18 — 28), middle-aged (34 — 53) or
elderly (63 — 86). For these databases, five participants were taken from each age
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group so that we could compare SNR and CNR estimations across age-ranges.
Although the proportion of each database used for the analysis may differ, they
are statistically comparable as the same number of participants were selected
randomly from the sample of each database.

For comparisons between databases the analysis focuses on the SNR of the
CC (SNRcc), for simplicity, unless otherwise stated. Sequences incorporating
multiple echo times (e.g., MP2RAGEME) technically provide multiple contrasts
in one sequence and were therefore all included in the estimates. For example,
a sequence with four TEs (e.g.,, MP2RAGEME) would give four contrasts per
participant. We chose five subjects to ensure feasibility of the manual measures
while accounting for potential variations in quality within a database. The CC
and CN may not be the optimal structures for SNR comparisons for all of the
contrasts for each database, but using these structures allows comparability over
the entire analysis. To calculate the SNR of the CC, LCN and RCN, one expert
rater manually delineated the regions using the MIPAV imaging software (Medical
Image Processing, Analysis and Visualization; McAuliffe et al., 2001). Once the
centre of the regions of interest were accurately delineated, a 3 x 3 x 3 cube of
voxels was taken around one midpoint voxel to calculate the SNR using the
mean and standard deviation of 27 contiguous voxels in the structure (Fig 2.1). A
second method to calculate the SNR of these structures was also explored. Instead
of taking 27 contiguous voxels, we took the voxel volumes of each image into
account and measured the signal of 27 voxels from the same volumetric space.
This involves simply normalizing the size of the cube of voxels measured by the
images with the largest voxel size, so to measure from approximately the same
area of each structure. The results were in line with what is reported here, and

therefore we only report the measurements acquired from the first method.

To analyze the relationship between scan time and spatial resolution and scan
time and SNR¢(, two linear regression models were setup. Both models used scan
time as a predictor variable and either spatial resolution or SNR¢¢ as the inde-
pendent variable. This would allow us to observe a linear relationship between
either of the two parameters. To correct for multiple comparisons, a Bonferroni
adjustment was employed to maintain a 95% confidence in the analysis, giving a
new significance threshold of 0.025.

We also present comparisons between slab images (small FOV) and whole brain
images from databases that offer both, in order to demonstrate differences in SNR
and CNR at higher resolutions. Both frequentist and Bayesian t tests were em-

ployed in R to compare these. To compare age differences across multiple contrasts,
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CC

LCN

Figure 2.1: Sagittal (left), axial (middle), and coronal (right) views indicating the structures from
which SNR measurements were taken. These T1lw images were taken from one subject in the
MPI-CBS database. CC, corpus callosum; RCN, right caudate nucleus; LCN, left caudate nucleus.

linear mixed effect models from the ‘Ime4’ R package were used (Bates et al., 2014).
Model 1 (null model) included the respective databases as a random intercept
without adding any effect of age on SNR/CNR. Model 2 (full model) included
both the database as a random intercept and age as a fixed effect. The likelihood
estimations of each model were then compared by a likelihood ratio test though
the use of an Analysis of Variance (ANOVA). A Bayesian linear modelling tech-
nique was also used, where the resultant Bayes factors were compared between
model 1 and model 2. We opted to include the SNR and CNR data from all of the
databases, even those without large age ranges, so to use as much of the wealth
of information as possible for our statistical tests. This results in a larger centre
of mass on the younger age group than the middle-aged and elderly groups, and
although this does not result in an increase in power, it provides a more accurate
estimate of the effect of age on SNR and CNR. For the model comparisons, age
was used as a continuous predictor and therefore categorical ages were not used

within the statistical analysis, these were only used for visualization.
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To address the issue of reliability when taking a small subpopulation from large
samples, we re-ran some of the SNR and CNR analysis with a different sample
from the databases. 5 or 15 (if they included large age-ranges) additional samples
were taken from each database that allowed it (dependent on the original sample
size) and SNR measurements were calculated again from their T1w images for
comparison against the original sample. Of the 20 databases included in this article,
17 had a sample size large enough for us to take additional measurements. SNR
measurements were taken from the left caudate nucleus, right caudate nucleus
and corpus callosum of 164 separate T1w images.

2.3 Results

Based on our search, 41 databases were initially identified. After the first screen-
ing, 5 were excluded on the basis of access requirements. Of the remaining 36
databases, 20 were included in this article for description and comparison (see
Fig 2.2 for Preferred Reporting Items for Systematic Reviews and Meta-Analyses;
PRISMA flow diagram). Below we discuss these 20 databases that follow the
three criteria including 250 (Liisebrink et al., 2017), a completed Germany-based
database which highlights its potential use for building an in vivo MR brain at-
las due to its ultrahigh resolution whole brain images of one subject; Age-ility
(Karayanidis et al., 2016), a completed Australia-based database investigating
the relationship between cognitive control and adaptive/maladaptive behaviours
across the adult lifespan; the AHEAD database (Alkemade et al., 2020a), an ongo-
ing Netherlands-based database aiming to acquire high-resolution images of the
human subcortex and map so-called terra incognita; the Atlasing of the Basal Gan-
glia (ATAG) project (Forstmann et al., 2014), a completed Netherlands/Germany-
based database whose aim was to acquire high-resolution data to observe anatom-
ical differences over the adult lifespan; the Brain Genomics Superstruct Project
(GSP; Holmes et al., 2015), a completed US-based database looking to solidify and
find links between brain function, behaviour and genetic variation; the Cambridge
Centre for Aging and Neuroscience (Cam-Can; Shafto et al., 2014; Taylor et al.,
2017), an ongoing UK-based database aiming to characterize age-related changes
in cognition and brain structure and function, and to uncover the neurocognitive
mechanisms that support healthy aging; the Dallas Lifespan Brain Study (DLBS;
http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), an ongoing
US-based database designed to accelerate our understanding of both the preser-

vation and decline of cognitive functioning across the adult lifespan; the Human
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Connectome Project Young Adult (HCP-YA; Milchenko and Marcus, 2013; Van
Essen et al., 2013; Xu et al., 2012), an ongoing US-based database aiming to gen-
erate a complete and accurate description of the connections amongst grey mat-
ter locations in the human brain at the millimeter scale. Information eXtraction
from Images (IXI; http://www.brain-development.org), a completed UK-based
database from three London Hospitals aimed to aid in decision support in health-
care and the analysis of images obtained in drug discovery; Kirby 21 (Landman
et al., 2011), a completed US-based database aiming to assess the scan-rescan
reproducibility of a 60 minute scanning session, wanting to establish a baseline
for developing multi-parametric imaging protocols; Maastricht (Gulban et al.,
2018), a completed Netherlands-based database with the aim of facilitating the
development of segmentation algorithms on the challenging nature of 7T MR data;
Multiple Acquisitions for Standardization of Structural Imaging Validation and
Evaluation (MASSIVE; (Froeling et al., 2017)), a completed Netherlands-based
single-subject dataset aiming to serve as a representative testbed for diffusion-MRI
correction strategies, image processing techniques and microstructural modelling
approaches; the Midnight Scan Club (MSC; Gordon et al., 2017), a completed
US-based database of scientific volunteers wanting to increase our understanding
of brain function on the individual level, as opposed to just the central tendencies
of populations; the Max Planck Institute - Human Brain and Cognitive Sciences
repository (MPI-CBS; Tardif et al., 2016), a completed Germany-based database
wanting to stimulate the development of imaging processing tools for high resolu-
tion and quantitative imaging, that have been mainly designed for lower quality
images; Max Planck Institute — Leipzig Mind Brain Body (MPI-LMBB; Mendes
et al., 2017), another completed Germany-based databases which aimed to ex-
plore individuals variance across cognitive and emotional phenotypes in relation
to the brain; Nathan Kline Institute — Rockland Sample (NKI-RS; Nooner et al.,
2012), an ongoing US-based database aiming to provide normative trajectories of
brain development so to facilitate the identity of pathological markers; Pediatric
Template of Brain Perfusion (PTBP; Avants et al., 2015), a completed US-based
database focusing on increasing our understanding of adolescent brain develop-
ment with multi-model MR imaging and its relationship with both environmental
and cognitive measures; RAIDERS (Haxby et al., 2011), a completed US-based
database focusing on functional imaging during segments of full-length feature
film “Raiders of the Lost Ark”; the Southwest University Adult Lifespan Dataset
(SALD; Wei et al., 2018), a completed China-based database aiming to observe how
the normative brain changes structurally and functionally over the adult lifespan;
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and StudyForrest (Hanke et al., 2014; Sengupta et al., 2016), an ongoing German-
based database aiming to provide data in a more complex setting, as opposed to
the simplified experimental designs normally used, to therefore provide a more
ecologically valid insight into brain function.

Table 2.1 presents an overview of these databases including information on field
strength, sequences and the number of participants. Example T1-weighted (T1w)
images taken from each database are presented in Fig 2.3. Further information,
including the website address and accessing instructions of each database can be
found in Table A.1. Detailed descriptions of the individual databases can be found
on their website address or descriptor papers.

We would like to acknowledge the importance of other neuroimaging databases
that do not meet our selection criteria, such as the Open Access Series of Imaging
Studies (OASIS; Marcus et al., 2010; Marcus et al., 2007, 1000 Functional Con-
nectome Project (FCP; Mennes et al., 2013), Alzheimer’s Disease Neuroimaging
Initiative (ADNI; Mueller et al., 2005; Weiner et al., 2015), Autism Brain Imaging
Data Exchange (ABIDE; Di Martino et al., 2014), Brain Images of Normal Sub-
jects (BRAINS; Job et al., 2017), Australian Imaging Biomarkers and Lifestyle
Study of Aging (AIBL; Ellis et al., 2009), Pediatric Imaging, Neurocognition,
and Genetics (PING; Jernigan et al., 2016), Adolescent Brain Cognitive Devel-
opment (ABCD) study (Casey et al., 2018), Attention Deficit Hyperactivity Disor-
der (ADHD) 200 (Bellec et al., 2017), Child Mind Institute Healthy Brain Network
(CMI-HBN; Alexander et al., 2017), Center for Biomedical Research Excellence (CO-
BRE; http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), Con-
sortium for Reliability and Reproducibility (CoRR; Zuo et al., 2014), Function
Biomedical Informatics Research Network (fBIRN; Keator et al., 2016), Mini-
mal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD; Malone et al.,
2013), National Alzheimer’s Coordinating Center (NACC; Morris et al., 2006), Na-
tional Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA;
Brown et al., 2015), Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite
et al., 2014), Mindboggle-101 (Klein and Tourville, 2012), SchizConnect (Wang
et al., 2016), OpenNeuro (Poldrack et al., 2013) and the UK Biobank (Sudlow et al.,
2015). These databases, such as the ABCD database, and the PING database are
also of great interest, but they are not openly available to researchers outside of
NIH institutions, and thus do not meet our criteria for inclusion in this study (see
Table A.2 for an overview of the inclusion criterion these databases did not meet).
Additionally, we would like to recognize that many clinical databases also contain
images of healthy individuals. The reuse of databases consisting of only healthy
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Figure 2.2: PRISMA flow diagram.

27



Chapter 2

MAASTRICHT MASSIVE

. . [
NKI-RS RAIDERS StudyForrest

Figure 2.3: Mid-sagittal T1w images from each neuroimaging database. One participant was
selected at random from each of the databases to serve as an example of the image quality
expected.
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individuals is more convenient, creating an even lower threshold for the reuse
of data. We would like to emphasize that the exclusion of normative data from
clinical databases, databases containing non-harmonious data or databases that
have institutional and /or positional requirements is in no way a comment on their
data quality or usefulness.
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Because of the large age-ranges, fifteen participants were used for the following
subset of databases (AHEAD, ATAG, CAMCAN, DLBS, IXI, MPI-LMBB, NKI-
RS, SALD). Ten databases therefore present a mean SNR value of five partici-
pants, eight databases present a mean SNR value of fifteen participants and two
databases (MASSIVE and 250) were comprised of only one subject. For this case,
five scanning sessions were taken, and the mean SNR calculated. 670 images were
analysed in total for the main analysis, and a further 164 to test the reliability of
the initial sample.

Described below are the results of the SNR and CNR analysis. To comply
with the Health Insurance Portability and Accountability Act (HIPAA, https:
//www.hhs.gov/hipaa/index.html) and the European equivalent General Data
Protection Regulation (GDPR, https://eugdpr.org/), it is agreed upon by the
scientific community that high resolution MRI images give the means for identifi-
ability and facial reconstruction and must therefore be subject to precautionary
measures to ensure privacy (Bischoff-Grethe et al., 2007). Therefore, the images
provided here by the cited databases are coupled with a defacing mask to protect
against identifiability, with the exception of the IXI and MSC databases. Other than
this essential step, all included databases offer unprocessed images or both unpro-
cessed and pre-processed images, with the exception of the MPI-CBS database.
When available, all calculations regarding SNR and CNR used the unprocessed
MR images.

Due to the inherent trade-off between SNR and spatial resolution, we opted to
normalize the SNR and CNR by dividing the original ratio values by the voxel
dimensions of the acquired images. This gives a more accurate depiction of the
image quality of each database. Therefore, unless otherwise specified, or in the
case of quantitative images, we show normalized SNR values, not raw SNR values.
A graphical comparison of the raw SNR and the normalized SNR for the T1w
images of each database is shown in Fig A.1.

2.3.1 Comparing T1w images

As all the databases presented here contained a T1w image for each participant,
these were used as the main sample to be compared. A frequentist and Bayesian
paired t-test were used to compare the values of the two caudate nuclei within each
database, concluding that there were indeed no significant differences between the
calculated SNR, as there is substantial evidence for the null hypothesis (p = 0.630,
t =0.492, DF = 14, BF = 0.292; Jeffreys, 1935). The SNR of each nuclei, averaged by

database, are visualized in Fig 2.4.
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SNR estimations for left and right caudate nucleus
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Figure 2.4: SNR estimations for the left and right caudate nucleus. Data averaged over the
individuals of each database. Error bars indicate standard error of the mean.

Fig 2.5 visualizes the relationship between sample size and SNR. This indirect
tradeoff between the two is perhaps anticipated, simply due to the costs associated
with both an increased number of participants and superior acquisition methods
(e.g., higher field strengths and increased scan time). Of course, both sides of the
spectrum are accompanied with their own advantages and disadvantages. Larger
sample sizes can reduce the susceptibility to spurious findings and deliver greater
statistical power, but may have to sacrifice some features of the imaging data (e.g.,
voxel resolution, SNR or number of modalities). For example, databases with large
sample sizes and large voxel sizes may not be suitable for studying morphometric
changes that occur in small subcortical nuclei but can provide accurate estimations
of cortical thickness with a high statistical power.

Fig 2.6 displays the normalized SNR¢ and CNR values of the T1w images from
each database. The results are present as ascending from bottom to top, based
on their SNR estimation, ranging from 15.8 (GSP) to 292.3 (250 database). Their
numerical values are presented in Table 2.2.

To investigate the similarity of the first sample of measurements to the second
sample, a Bayesian ANOVA was used to provide evidence for or against the null
hypothesis (that these samples were taken from the same distribution). The Bayes
Factors (BF) resulting from this analysis for each structure are as follows: corpus
callosum SNR BF = 0.139, caudate nuclei SNR BF = 0.129, and the CNR BF = 0.224.
Based on Jeffreys, 1935 this provides substantial evidence for the null hypothesis,
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Figure 2.5: The relationship between sample size and SNRc. Error bars indicate standard error
of the mean. Both the SNR values and the standard errors are presented on the log scale. Circular
symbols indicate 3T data, triangular symbols indicate 7T data.
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Figure 2.6: Overview of ratios for databases containing a T1w image. SNR¢c values are shown in
black, CNR values in grey. Each value has been normalized by the voxel dimensions specific to
the image it describes. Error bars indicate standard error of the mean. Databases marked with an
apostrophe (") indicate 7T data. The dotted vertical lines indicate the mean of the SNR¢¢ (black)
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Table 2.2: Summary table describing the SNRcc, SNRcy and CNR of the Tlw images of each
database. Each ratio value is shown as the mean of all the subjects + the standard error of the
mean. n indicates the number of subjects used for the calculations.

Database Sequence Contrast SNRcc SNRcn CNR N
250 MPRAGE Tiw 2923150 1983 +146 935+6.7 1
AHEAD MP2RAGEME Tlw 834 6.5 395+13 285+13 15
Age-ility MPRAGE Tiw 31.4+20 20.4+2.0 58+09 5
ATAG MP2RAGE Tiw 1186+75 29.6+14 19.6+0.7 15
Cam-Can MPRAGE Tiw 328 +3.0 241+12 6.1+05 15
GSP MEMPRAGE  Tlw 158 +0.8 8.8+0.7 3602 5
DLBS MPRAGE Tiw 383+4.2 194 +27 4807 15
HCP-YA MPRAGE Tiw 54.7 £5.6 404+18 91+13 5
IXI - Tlw 58.0 4.1 337+18 42+04 15
Kirby 21 MPRAGE Tiw 342+18 167 +1.1 69+06 5
MAASTRICHT MPRAGE Tiw 96.9 £2.2 36.6 3.3 185+21 5
MASSIVE 3DTFE Tiw 172 +1.2 10.6 £ 0.3 64+03 1
MsC - Tiw 40.0 £2.0 26.6 +1.3 93+£02 5
MPI-CBS MP2RAGE Tiw 271.3+31.8 931+159 424+54 5
MPI-LMBB MP2RAGE Tiw 266+1.6 127 +£0.3 64+03 15
NKI-RS MPRAGE Tiw 445+25 28.1+1.0 7804 15
PTBP MPRAGE Tiw 43.6+3.6 282+18 92+07 5
RAIDERS MPRAGE Tiw 28.9 £3.8 169+1.6 88«09 5
SALD MPRAGE Tlw 35121 23908 60+02 15
StudyForrest 3DTFE Tiw 75275 435+4.1 185+11 5

that both samples from each database come from the same distribution. This shows
that our sample-based method is reproducible across samples of the databases.
Although it would ideally be best to manually segment the CC and CN in each
subject, the simplified approach we take here provides a good trade-off between
accuracy and manageability given the large of amount of manual delineation that
had to be done in the original (665) and the second (164) sample.

2.3.2 Comparing T2w images

Fig 2.7 presents an overview of the estimated SNR¢¢c and CNR of the six databases
containing T2w images. The results are ordered as ascending from bottom to top,
based on the SNR(¢ estimation, ranging from 11.8 (Cam-Can) to 51.6 (StudyFor-
rest). Their numerical values can be found in Table 2.3.

2.3.3 Relationships with scan time

We then turned to analyze the relationships between scan time and SNR¢ as well
as scan time and the acquired spatial resolution. Fig 2.8A shows the relationship
between scan time and the normalized SNR for both 3T and 7T scanners separately.

It can be seen that there is a significant positive correlation within the 3T data,
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SNR and CNR estimations for T2 weighted images
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Figure 2.7: Overview of the ratios for databases containing a T2w image. SNR¢ values are shown
in black, CNR values in grey. Error bars indicate standard error of the mean. The dotted vertical
lines indicate the mean of the SNR(( (black) and CNR (grey).

Table 2.3: Summary table describing the SNRcc, SNRcy and CNR of the T2w images of each
database. Each ratio value is shown as the mean of all the subjects + the standard error of the
mean. n indicates the number of subjects used for the calculations.

Database Sequence Contrast SNRcc SNRcn CNR N
Cam-Can  SPACE T2w 11.8+14 143+0.7 27+02 15
HCP-YA SPACE T2w 267+26 37.7+3 115+03 5
IXI - T2w 15514 1771 40+02 15
MASSIVE  3DTSE T2w 219+20 138+18 22x04 1
MSC - T2w 16.0+15 23+23 5207 5
Forrest 3DTSE T2w 516+78 66.0+3.0 102+10 5
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Table 2.4: Normalized SNRcc, SNRcy and CNR values for the databases that presented slabs as
well as whole brain data. 15 subjects were used for all contrast types in these databases. Standard
errors of the mean are given for normalized SNR¢c and CNR values. qT1, quantitative T1 map;
T1w, T1 weighted; PDw, proton density weighted; qT2*, quantitative T2* map; WB, whole brain;
SB, slab.

Database  Sequence Contrast Type SNRcc SNRcn CNR
AHEAD MP2RAGEME  qT1 WB 84.4+83 68.4 + 4.8 209 2.1
AHEAD MP2RAGEME  qT1 SB 123358 1150+64 347+1.3
AHEAD MP2RAGEME  Tlw WB 834 +6.1 395+15 285+1.3
AHEAD MP2RAGEME  Tlw SB 1571+75 103.1+59 374+1.3
AHEAD MP2RAGEME  PDw WB 975+ 6.2 295+24 1.5+05
AHEAD MP2RAGEME  PDw SB 147.8+82 795+64 83+25
AHEAD MP2RAGEME  qT2* WB 37.0+2.1 221422 3.0+£04
AHEAD MP2RAGEME  qT2* SB 63.8+27 498 +4.4 64+19
ATAG MP2RAGE qT1 WB 69.0 £2.7 51.8+24 18.0 £ 0.6
ATAG MP2RAGE qT1 SB 110+ 5.2 90.7 £ 3.9 226 +1.2
ATAG MP2RAGE Tlw WB 1186+65 29.6+14 19.6 +0.7
ATAG MP2RAGE Tlw SB 146.2+9.1 479=+21 233+1.3

and the 7T data displays the same trend but does not show significance. This
relationship is expected, since longer scan times are associated with better image
quality. In addition to scan time predicting image quality in terms of SNR¢c, a
negative relationship between scan time and the acquired voxel volume was found
(Fig 2.8B). Longer scan times in the presented databases are therefore indicative of

better T1w images both in terms of SNR and spatial resolution.
2.3.4 Quantitative T1 and FOV

Four databases provide quantitative T1 maps (qT1) in addition to T1w images.
Two of these databases also provide both whole-brain images as well as slabs with
higher resolution and a smaller FOV. A comparison of the normalized SNR¢¢
associated with the qT1 and T1w images of the same databases are shown in Fig
29.

Table 2.4 displays the SNRcc and CNR associated with the whole-brain and
slab images of the same contrasts acquired by these two databases (ATAG and
AHEAD). A frequentist and Bayesian paired t-test indicates that the slab images
have a significantly larger SNR¢¢ than the whole brain images, demonstrating the
benefits of high resolution (p = 0.0017, t = 6.06, DF = 5, BF = 25.81). Though, this
does not appear to translate to a higher CNR (p = 0.074, t = 2.3, DF = 5, BF = 1.57).
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Figure 2.8: The relationship between the SNR¢cc and

voxel dimensions of T1w images with

scanning time in 18 databases. A) Graphical representation of SNR¢¢ and scan time. Error bars
indicate standard error of the mean. B) Graphical representation of voxel dimensions and scan
time. Both legends contain information relating to the adjusted R-squared value, intercept, slope,
F statistic, degrees of freedom and p-value. Circular symbols indicate 3T data, triangular symbols

indicate 7T data.
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SNR estimations for T1 maps and T1 weighted images
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Figure 2.9: Graphical representation of difference in normalized SNR¢¢ values for quantitative T1
maps and T1-weighted images. Databases marked with an apostrophe (‘) indicate 7T data. qT1,
quantitative T1 map; T1w, T1-weighted; wb, whole-brain; sb, slab. Error bars indicate standard
error of the mean.

2.3.5 Age-related differences

Figs 2.10 and 2.11 display the differences in the SNR and CNR across the age
groups of young (age: 18 — 28), middle-aged (age: 34 — 53) and elderly subjects
(age: 63 - 86) in both T1w and T2w images. 165 T1w images and 50 T2w images
were used for model comparison. For the SNRcc on the T1w images, the full
model comprising age as a predictor was a significantly better fit than the null
model (p = 0.011). This relationship was also found for the Tlw CNR results (p =
0.00037). In addition to age-related differences in the SNR of white matter areas
(SNR¢c) and the CNR of T1w images, we also tested the relationship between
age and the SNR of a grey matter region (SNRcy). A significant effect of age was
found, indicating a loss of signal in the CN over age (p = 0.0062). We then turned
to analyze the effect of age on the MR signal of T2w images. Again, we were
interested in age differences in the SNR¢¢ the SNRcy and the contrast difference
between the grey and white matter regions (CNR). Similarly to the T1w images,
an age-related decline in SNR¢cy and CNR was observed in the T2w images (p =
0.0019, p = 0.000022, respectively) even though the model comparison indicated
that the age-related differences in SNR¢c¢ were non-significant in the T2w images
(p=0.24).

38



Quantity and quality

To gain a greater insight into the relationship between age and the acquired
signal from these white and grey matter structures, we used a Bayesian linear
modelling technique. The resulting BFs from this method indicated a less conclu-
sive relationship than its frequentist counterpart in some respects. In terms of an
age-related reduction in signal within the T1w images, moderate evidence was
found for this hypothesis in the CN (BF = 5.52), followed by further moderate
evidence within the CC (BF = 4.29), and very strong evidence for this hypothesis
was found for the CNR (BF = 61.90). Turning to the T2w images, no evidence
in either direction was found for an age-related reduction in signal from the CC
(BF = 1.89), strong evidence was found for this hypothesis in the CN (BF = 14.51),
and across the age groups, the CNR appeared to show extreme evidence for a
relationship (BF = 504.22). Taken together, these results suggest the presence of an
age-related deterioration in signal in the caudate nuclei, inferred by both the T1w
and T2w images.

As a further assessment of age-related differences, we also compared the SNR
and CNR values across qT1 and qT2* images. We again compared linear mixed
effect models including age as a fixed effect and the database as a random intercept
to a null model without an effect of age. One database, MPILMBB, provides age
ranges of five years for each of their participants as opposed to a single age value,
presumably for privacy purposes. In order to derive reliable estimates when
comparing these mixed effect models, we randomly sampled ages for participants
in this database from a uniform distribution of the age range reported. We then
iterated over this a total of 1000 times and calculated results from the frequentist
and Bayesian model comparisons for each sampled age, below we report the mean
results for these iterations. Similarly to the Tlw and T2w comparisons, both qT1
and qT2* maps showed a significant change in CNR across the adult lifespan (p
=0.00032, BF =73.25; p = 0.035, BF = 1.12). The SNR¢y significantly declined in
both the qT1 and qT2* images (p = 0.0015, BF = 19.68; p = 0.00019, BF = 247.99,
respectively). A similar decline was found for the SNR¢¢ in the qT2* images (p =
0.00063, BF = 34.83). Although, only a negligible decline in signal was found for
the CC in the qT1 images (p = 0.020, BF = 2.49).

2.4 Discussion

We present the first quantitative comparison exploring the image quality offered
by twenty open-access databases of structural MRI freely available to researchers
world-wide. To this end, SNRs were calculated from both the corpus callosum and

caudate nuclei. From these calculations, CNRs were derived, which in this case
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Figure 2.10: Comparison of ratios for Tlw images across age groups. A) SNRcc. B) SNRcy.
C) CNR. Error bars indicate standard error of the mean. Each bar singular represents five
participants. Databases marked with an apostrophe (‘) indicate 7T data.
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Figure 2.11: Comparison of ratios for T2w images across age groups. A) SNRcc. B) SNRcy.
C) CNR. Error bars indicate standard error of the mean. Each bar singular represents five
participants.

can indicate the extent to which these images can distinguish between grey and
white matter. An additional analysis assessed differences in T1w and T2w SNR
values across the adult lifespan, taking advantage of larger imaging databases with
accompanying demographic information and large age ranges. Due to the wealth
of data provided by these databases, clear relationships between the scan time and
both acquired voxel dimensions and acquired SNRs could also be found, indicating
the efficiency of specific scanning protocols. As only a subset of the databases
offered multiple contrasts, direct inter-database comparisons between all contrast
types could not be provided. Within this subset, intra-database comparisons
between contrasts are possible. SNR and CNR estimations for the contrasts offered
by each database are displayed in the Table A.3.

The results of the SNR and CNR calculations show a clear benefit of using
UHF MRI, with the five 7T databases (250, AHEAD, ATAG, MAASTRICHT and
MPI-CBS) obtaining the largest values in the CC. Moreover, the MPI-CBS and 250
databases showed much higher image quality compared to the other databases.
It should be noted, however, that the images offered from the MPI-CBS database
include image post-processing pipelines that are not applied in any of the other
databases. Such processing pipelines can increase image quality substantially, and
are another benefit of openly accessible imaging data and protocols. Through the
availability of this data, exciting new data pipelines and tools can be developed
and shared. In Table A.3, you can find the SNR¢¢, SNRcy and CNRs for all the
images analyzed for each database. Note that this includes two databases (HCPYA
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and 250), which provide both processed and unprocessed images. A clear benefit
of post-acquisition processing pipelines can be seen when comparing these ratios
within-database. The processed T1w images provided by the 250 database increase
the SNR¢ from 292.3 + 15.0 to 570.4 + 123.5, a similar increase can be seen in the
SNRcy, increasing from 198.3 + 14.6 to 368.0 + 53.5, though this did not benefit
the CNR (93.5 + 6.7 and 93.7 + 14.6 for the unprocessed and processed images,
respectively). Within the HCPYA database, increases in the SNRs and CNRs of
both the T1lw and T2w images are also apparent. Taken together, this suggests that
optimizing post-acquisition processing methods can provide additional increases
in image quality that are not trivial.

While the analysis presented here quantifies an important aspect of the
databases, they are not the only factor to take into account when selecting imaging
data for further research purposes. At an overview, our results indicate a strong
advocation for the MPI-CBS and 250 databases, owing to their SNR and CNR far
above the rest. However, there are also other factors to consider, for example,
sample size, age-range and the number of contrasts included are just some of a
long list of criteria many research questions need to consider. As such, the small
sample size, limited age-range and limited contrasts make the MPI-CBS and 250
databases less attractive for many lines of research.

Although the relationships of SNR and voxel dimensions with scan time pre-
sented here are obvious and reflect basic MRI physics, it is nonetheless interesting
to see the efficiency of separate MRI protocols. These relationships are particularly
informing when aspects of image quality largely deviate from linearity. Optimized
MR sequences or contrasts that allow for high spatial resolution or high SNRs with
short scan times offer preferable performance. These comparisons also indicate
further favourability for 7T imaging, with most of the resultant 7T database images
residing on the efficient side of the linear trends displayed with scan time.

We present here age-related differences across four MRI contrasts; T1w, T2w,
qT1, and qT2*. Our SNR¢y analyses suggest a consistent age-related decline in all
image types. Age-related changes in relaxation values in the human brain have
been long-known (Bottomley et al., 1984). There is also evidence that T2* values
reflect iron concentration in neural tissues (Brooks et al., 1989). During healthy
aging, iron-deposition appears to increase in some brain structures (e.g., parts of
the basal ganglia) (Aquino et al., 2009; Haacke et al., 2005; Hallgren and Sourander,
1958; Morris et al., 1992). The decline of qT2* measures in the CN therefore likely
reflects this increase in iron deposition. The lowering in effective T2 found here

is also in line with previous work (Keuken et al., 2017; Siemonsen et al., 2008).
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Volume loss in this region is another known process observed in the healthy aging
brain (Di et al., 2014; Raz et al., 2003), which would be accompanied by a declining
proton density, lowering the signal derived from T1 recovery and T2 relaxation.
Taken together, these declines in signal would suggest an age-related structural
change of the caudate nuclei. A more complicated picture is painted for the SNR¢¢
measurements. A SNR decline in the CC was found in T1w, qT1 and qT2* images,
though this decline is not as apparent as in the CN. Post mortem histological
analyses of white matter regions have shown that the myelination of nerve fibres
decreases with age (Marner and Pakkenberg, 2003). This process of demyelination
is associated with an increase in SNR in qT1 and T1w images (Keuken et al., 2017),
in opposition to what was found here. It should be noted, however, that there
appears to be an increase in image noise in the elderly population (measured
as the standard deviation of the 27 voxels measured per image). This increase
in noise was not accompanied by a decrease in mean signal of the region, and
therefore likely drives the small decline in SNR found. For the other relationships,
this increase in noise as a function of age is also apparent. However, since this
increase is also accompanied by a decrease in mean signal, it most likely reflects
an underlying structural change. We note that age-related structural changes are
heterogeneous across different regions of the brain. The processes underlying
these changes are similarly heterogeneous and a combination of a multitude of
factors, including changes in the small vessels supplying the regions, regional
brain atrophy, loss of myelination and impaired white matter (Bullitt et al., 2010;
Marner and Pakkenberg, 2003; Pagani et al., 2008; Resnick et al., 2003). These
changes, in addition to increased subject motion during scanning could all impact
the increase level of noise found in the elderly population. It has been suggested
that head motion increases as a function of age (Savalia et al., 2017), although
some findings have suggested a more non-linear relationship between the two
(Pardoe et al., 2016). Even subtle forms of motion artefacts have been shown to
affect interpretability of imaging analysis results (e.g., cortical thickness estimates;
(Fjell et al., 2009)). Image noise introduced through head motion also lowers SNR
estimates and degrades image quality (Havsteen et al., 2017). This highlights the
need for motion correction in structural MRI. Due to our limited snapshot of the
data available, we can only show results that hint at these intricate relationships.

For the CNR measurements, there consistently appears to be an age-related
decline across the adult lifespan, as indicated by the analysis of all four contrasts.
Such CNR differences are also found when comparing adult and infant brains
(Mewes et al., 2006). This decrease in CNR over the adult lifespan is a by-product
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of the physical changes to the contrasted regions (CC and CN). The observed
decrease in SNR in these two regions leads to this decrease in CNR. The analyses
of age-related differences presented here illustrates just one of the many interesting

ways these open-access databases can be used for in the future.

It should be stressed that there are a variety of methods to calculate both the
SNR and CNR of structural MR images, note that most of these methods are not
applicable to all situations. For SNR estimation, there are two other prominent
methods used in the field. The first involves measuring the SNR of the region of
interest (ROI) within the brain and dividing it by the SNR of the background of the
image outside of the brain. The second involves measuring only the mean signal
of the ROl inside the brain and dividing it by the standard deviation of a region
outside of the brain. A commonality in both of these methods is that they assume
that measuring an area outside of the brain captures only the noise induced by
the MR scanner itself. One reason we opted for the method used here is that due
to inhomogeneities in the magnetic field of each scanner and differences in the
spatial distribution of noise (Pruessmann et al., 1999; Sodickson and Manning,
1997), the area of the background image chosen for the measurement of noise
could differ significantly between sites and sequences. Of course, our method
does not remove the problem of bias, but as this bias is the same across all of
the images measured here, we believe the comparison is fair. Regardless of the
method used for the measurement of the SNR, the most important requirement
for an objective comparison is that the method used is consistent across all data.
To signify that this method was indeed reliable within the databases, we ran the
validation study on the separate T1w images. The reproducibility of the estimates
that we took indicate that the methods holds as a consistent measurement of SNR.

As spatial resolution increases, sensitivity to both voluntary or involuntary mo-
tion and physiological noise will also increase, and therefore continue to be a ceil-
ing on image quality at all field strengths. Methods to overcome such movement
artefacts include both retrospective and prospective motion correction (Haacke
and Patrick, 1986; Lee et al., 1996). Both approaches have displayed their ability to
increase image quality at 3T and 7T, providing a way around subject motion at
high resolution (Federau and Gallichan, 2016; Gallichan et al., 2016; Stucht et al.,
2015; Zaitsev et al., 2017). Removing this confound completely while scanning
healthy individuals is infeasible, but post mortem MRI can benefit from the lack of
movement artefacts, allowing for scan times inconceivable in live subjects. These
scan times can facilitate the visualization of a much larger number of smaller brain

structures (Oguz et al., 2013). For the purpose of creating probabilistic atlases of
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the human brain, such a technique when used in concurrence with histological
methods can provide greater detail than in vivo MRI alone (Forstmann et al., 2017).

We acknowledge that for many of the databases discussed here, we have only
analyzed a snapshot of the data and have not taken advantage of all of the data we
have access to. This limitation was necessary to keep our analysis level feasible,
as the range in sizes of these databases make using all participants problematic.
For the future, we would hope that a standardized SNR protocol will become
a feature that all new databases will use and present with their data. Ideally,
this would include manually segmented masks of the same anatomical areas,
from unprocessed imaged in their native spaces. We also hope that open-access
databases continue to become the norm across the scientific field.

2.5 Conclusion

The current study provides a quantitative comparison between some of the most
fruitful open-access neuroimaging databases available, which can aid researchers
in selecting which databases to use. The results presented here give an indication of
the large variation in image quality provided by these databases. The estimations
(SNR and CNR), as well as the number of contracts provided by each database
(as these give visual information to specific tissue types), can aid in the selection
process. The benefit of large-scale imaging databases for creating general maps
of cortical organization and providing both phenotypic and genetic comparisons
across populations is clear. However, large-scale databases often come at the cost
of lower image resolution due to the financial implications of using large sample
sizes, ultra-high field MRI and extensive scan times. In particular for the human
subcortex, image resolution is critical and standard structural 3T MRI data does
not provide the required resolution and SNR for small nuclei. The higher quality
of 7T databases provides a clear advantage, but high cost and limited access are
still preventing the collection of larger cohorts. Each database presented here has
assisted an important neuroscientific movement towards open-access imaging
data. With the number of subjects ranging from one to over 1500 and the number
of sessions from one to 18, the objectives and characteristics of these databases
are diverse. We hope that our current efforts will help researchers to choose the
appropriate database for their research question and highlight their usefulness to

the scientific field in the study of normative human brain structure.
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Charting human subcortical morphometry across the adult
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Chapter 3

Abstract

The human subcortex comprises hundreds of unique structures. Subcortical
functioning is crucial for behavior, and disrupted function is observed in common
neurodegenerative diseases. Despite their importance, human subcortical
structures continue to be difficult to study in vivo. Here we provide a detailed
account of 17 prominent subcortical structures and ventricles, describing their
approximate iron and myelin contents, morphometry, and their age-related
changes across the normal adult lifespan. The results provide compelling insights
into the heterogeneity and intricate age-related alterations of these structures.
They also show that the locations of many structures shift across the lifespan,
which is of direct relevance for the use of standard magnetic resonance imaging
atlases. The results further our understanding of subcortical morphometry and
neuroimaging properties, and of normal aging processes which ultimately can

improve our understanding of neurodegeneration.
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3.1 Introduction

The human subcortex comprises hundreds of unique structures (Alkemade et al.,
2013; Forstmann et al., 2017) which receive interest from a broad range of neu-
roscientific disciplines (e.g. Lozano et al., 2019; Raznahan et al., 2014; Shepherd,
2013; Tian et al., 2020). Subcortical functioning is crucial for normal behavior
and physiology including decision making (Ding and Gold, 2013), reward pro-
cessing (O'Doherty et al., 2004; Schultz et al., 1997), and motor behavior (Mink,
1996). Disruption of subcortical structures is observed in common neurodegenera-
tive diseases including Parkinson’s (Hirsch et al., 1988) and Alzheimer’s disease
(Ehrenberg et al., 2017; German et al., 1987). Subcortical structures are also of
interest as (potential) deep brain stimulation (DBS) targets in Parkinson’s disease
(Fasano and Lozano, 2015; Limousin et al., 1995) and other disorders such as major
depression and epilepsy (Lozano et al., 2019).

Research into the subcortex depends on the imaging of individual subcortical
structures. However, visualizing subcortical structures using in vivo methods such
as magnetic resonance imaging (MRI) is challenging due to their close spatial
proximity, biophysical properties, and morphometry (Keuken et al., 2018). As
a consequence, our understanding of the subcortex remains limited, and lags
behind our understanding of the cortex. Quantitative ultra-high field 7 Tesla
MRI provides a method to overcome the challenges associated with visualizing
subcortical structures (Bazin et al., 2020; Keuken et al., 2018), which we use here to
provide a cross-sectional account of the subcortex across the adult lifespan.

The biophysical properties that determine the appearance of brain structures on
MR images include the iron and myelin contents, which influence the main sources
of contrast in MRI: the longitudinal and effective transverse relaxation rates, and
the local susceptibility to magnetic fields. Furthermore, iron and myelin are highly
biologically relevant: Myelin plays an important role in plasticity and development
(e.g. Fields, 2015; Hill et al., 2018; Turner, 2019), and iron is crucial for normal tissue
functioning (e.g. Zecca et al., 2004). Iron deposition (Daugherty and Raz, 2013;
Hallgren and Sourander, 1958; Raz and Rodrigue, 2006; Ward et al., 2014; Zecca
et al., 2004) and decreased myelination (Raz and Rodrigue, 2006; Shen et al., 2008)
are part of normal aging processes, but excessive iron accumulation and myelin
degradation are prominent in diseases including Parkinson’s and Alzheimer’s
disease (e.g. Mancini et al., 2020; Zecca et al., 2004). A description of normal
age-related changes in iron and myelin content can therefore provide a frame of

reference to contrast pathological iron accumulation and myelin degradation, and
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to refine methods for the early detection of pathological alterations using MRI
measures as biomarkers.

An additional factor determining the appearance of the human subcortex is
the small size of the individual structures. Prominent subcortical structures such
as the subthalamic nucleus are as small as a few millimeters thick, limiting the
number of voxels they encompass on MR images commonly used in research and
in the clinic. Moreover, voxels at the border of structures likely include tissue from
adjacent structures (partial voluming), which can lead to biases especially when
voxel sizes are large relative to the structure (Mulder et al., 2019). Structure size
should therefore be taken into account when imaging the subcortex. An important
additional consideration here is the development of atrophy with increasing age,
which is reflected in reduced volume of gray matter structures (Cherubini et al.,
2009; Courchesne et al., 2000; Herting et al., 2018; Lemaitre et al., 2012; Raz,
2004; Raz and Rodrigue, 2006; Walhovd et al., 2005) and which results in more
cerebrospinal fluid (CSF) and larger ventricles (Good et al., 2001; Greenberg et al.,
2008; Stafford et al., 1988; Walhovd et al., 2005). In addition to volume changes,
atrophy can result in a shift in the location of structures (Keuken et al., 2017;
Keuken et al., 2013; Kitajima et al., 2008).

These factors combined hamper visualization of the subcortex when using
conventional MRI techniques. Furthermore, the age-related alterations in these
factors alter the appearance of the subcortex with increasing age. In this study,
we provide a detailed account of 17 subcortical structures and ventricles using
data from 105 healthy participants across the adult lifespan obtained with in vivo
methods tailored for studying the human subcortex (Alkemade et al., 2020a). For
practical reasons, and without intending to make any claims on how a subcortical
structure should be defined, we define subcortical as any anatomical structure
located inferior to the corpus callosum.

Compared to previous studies, which often focus on a select set of regions
and/or MRI or morphometry measures at a time, we simultaneously study a
wider range of structures and measures. These include structures and measures
that have not been studied before in the context of aging. The structures under
investigation include gray matter regions, white matter tracts, and the ventricles.
The inclusion of a variety of structures allows us to study across-region similarities
and differences in aging effects. Similarly, the large set of quantitative MRI (qQMRI)
contrasts and morphometry measures allows us to explore aging as a multidimen-
sional process. As such, we provide a wide picture of subcortical aging across

metrics and regions.
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Furthermore, we improve upon previous methods by using qMRI acquired
at 7 Tesla (T) with 0.7 mm isotropic resolution, and employ the MASSP method
(Bazin et al., 2020) to obtain automated delineations with an accuracy that approxi-
mates the gold standard of manual delineations (Alkemade et al., 2021; Bazin et al.,
2020). Tullo et al. (2019) have shown that the choice of delineation method can
influence which age-related change models provide best fits to empirical data, il-
lustrating the importance of high-quality delineations in aging studies. Additional
methodological improvements include the development of a subcortical thickness
estimation method, which provides a thickness estimate analogous to cortical
thickness metrics; as well as the development of iron and myelin approximation
methods. Combined, these methods allow us to interpret our results in terms of the
hypothesized biological processes that occur during aging: myelin degradation,
iron accumulation, and atrophy (changes in size, shape, and location).

3.2 Methods
3.2.1 Participants

We used the Amsterdam ultra-high field adult lifespan database (AHEAD; Alke-
made et al., 2020a), which consists of multimodal MRI data from 105 healthy
participants. Inclusion criteria were age 18-80 years and self-reported health at
the time of inclusion. Exclusion criteria were any factors that could potentially
interfere with MRI scanning, including MRI incompatibility (e.g., pacemakers),
pregnancy, and self-reported claustrophobia. At least six males and females were
included in each age decade to ensure full coverage of the adult lifespan. All
participants gave written informed consent prior to the onset of data collection.
The local ethics board approved the study.

3.2.2 MRI scanning

Images were acquired at the Spinoza Centre for Neuroimaging in Amsterdam,
the Netherlands, using a Philips Achieva 7 T MRI scanner with a 32-channel
phased-array coil. Routine quality checks of the quantitative maps appearance
were performed previously (Alkemade et al., 2020a) and all subjects from the
database were included for analysis. T1-weighted, T2" contrasts were obtained
using a MP2RAGEME (multi-echo magnetization-prepared rapid gradient echo)
sequence (Caan et al., 2019). The MP2RAGEME is an extension of the MP2RAGE
sequence (Marques et al., 2010) and consists of two rapid gradient echo (GRE; )
images that are acquired in the sagittal plane after a 180 degrees inversion pulse
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and excitation pulses with inversion times TI; ; = [670 ms, 3675.4 ms]. A multi-
echo readout was added to the second inversion at four echo times (TE;= 3 ms,
TE; 14 = 3,11.5, 19, 28.5 ms). Other scan parameters include flip angles FA;, =
[4, 4] degrees; TRGRE1 2 = [6.2 ms, 31 ms]; bandwidth = 404.9 MHz; TR\poraGE =
6778 ms; acceleration factor SENSE PA = 2; FOV =205 x 205 x 164 mm; acquired
voxel size = 0.7 x 0.7 x 0.7 mm; acquisition matrix was 292 x 290; reconstructed
voxel size = 0.64 x 0.64 x 0.7 mm; turbo factor (TFE) = 150 resulting in 176 shots;
Total acquisition time = 19.53 min. No B1 field correction was performed; instead,
the B1 field was optimized for subcortex during data acquisition.

3.2.3 Quantitative MRI modeling and parcellation

The MP2RAGEME consists of two interleaved MPRAGESs with different inversions
and four echoes in the second inversion. Based on these images, we estimated
quantitative MR parameters of R1, R2" and QSM as follows. First, we took advan-
tage of the redundancy in the MP2RAGEME sequence to perform a PCA-based
denoising with LCPCA (Bazin et al., 2019). R1 maps were then computed using
the standard look-up table approach of Marques et al. (2010) to recover T1 values
from the measured signals. R2'-maps were computed by least-squares fitting of
the exponential signal decay over the four echoes of the second inversion. QSM
images were obtained from the phase maps of the second, third, and fourth echoes
of the second inversion with TGV-QSM (Langkammer et al., 2015). Skull stripping,
required for QSM, was performed on the second inversion, first echo magnitude
image (Bazin et al., 2014).

The anatomical regions of interest were defined with the MASSP automated
algorithm (Bazin et al., 2020) on the basis of the R1, R2" and QSM image maps.
The algorithm combines location, shape, and quantitative MRI priors to define 17
subcortical anatomical regions and ventricles, listed in Table 3.2. Separate masks
for left and right hemisphere were obtained except for 3V, 4V, and fx.

For this study, the MASSP algorithm was trained on renormalized versions of
the quantitative contrasts using a fuzzy C-means clustering of intensities, and
linearly interpolating between cluster centroids (Pham and Bazin, 2009). The
renormalized contrasts were thus less sensitive to the intensity variations induced
by aging. Additionally, the registration to the MASSP atlas was performed in two
successive steps, producing more accurate alignment of the anatomical priors with
each subject. This second step was particularly important to compensate for the
large variability of ventricular size and shape in the study cohort. The algorithm
itself was unchanged, and we re-validated the accuracy of the method against
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manual delineations as in (Bazin et al., 2020). Improvements were noticeable for
more variable structures such as the ventricles, fornix, and claustrum, as well as

some of the more challenging smaller structures, see Figure B.1.
3.2.4 Iron and myelin approximation

Iron and myelin are main determinants of MR image contrast (Stiiber et al., 2014).
Several lines of research indicate that the concentrations of iron and myelin are
approximately linearly related to qMRI metrics R1, R2" and QSM (Hametner et al.,
2018; Mangeat et al., 2015; Marques et al., 2017; Metere and Moller, 2018; Rooney
et al., 2007; Stiiber et al., 2014). Whereas many studies make inferences on iron and
myelin contents based on a single MRI modality (e.g., Daugherty and Raz, 2013;
Khattar et al., 2021), we use the multimodal quantitative nature of our data to
estimate the relation between multiple modalities and iron and myelin. Assuming
a linear relationship between iron and myelin on the one hand, and qMRI on the
other, linear models can be fit and used to predict iron and myelin contents based
on gMRI values (Metere and Moller, 2018):

Iron = Intercept + wj g * QSM + w; g+ * R2" + w; g1 * R1 3.1)
Myelin = Intercept + Wy gsm * QSM + Wy g2+ * R2* + wy, g1 * R1 '

Estimating the parameters w of these models requires population-average es-
timates of iron and myelin content for a variety of regions of interest that cover
the range of R1, R2", and QSM values observed across the brain. Following the
approach by Metere and Moller (2018), we obtained these values from the litera-
ture (Hallgren and Sourander, 1958; Metere and Moller, 2018; Randall, 1938), and
supplemented those values using observations in post mortem tissue (detailed be-
low). For iron estimates, Hallgren and Sourander (1958) provided quantifications
across a number of subcortical and cortical regions, which, combined with the
corresponding gMRI values obtained using our own MRI data, allowed for stable
estimators of the weights in Equation 3.1. An iron concentration of 0.061 in the
ventricles was assumed (following Metere and Moller, 2018, who based this value
on LeVine et al., 1998).

As a reference for myelin concentrations, we used work by Randall (1938),
which provides lipid concentrations for the corona radiata, frontal and parietal
white matter, brain stem, thalamus, caudate, and frontal and parietal gray matter.
Following Metere and Moller (2018), we assumed that these lipid concentrations
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reflect myelin concentrations. Unfortunately, the reported regions do not include
iron-rich nuclei, which limits the range of (especially) R2" and QSM values with
known corresponding lipid concentrations. Using a limited number of regions
of interest to estimate the myelin model could limit the generalizability of the
estimated parameters to structures with lower R2" and/or QSM values, which
would bias myelin estimates in iron-rich structures like some basal ganglia nodes
(e.g., based on using only Randall’s (1938) lipid concentrations, Metere and Moller
(2018) obtained negative myelin concentrations in various basal ganglia structures).

To supplement the literature-based myelin concentrations, we approximated
the myelin contents of other regions of interest using a post mortem specimen.
Specifically, we used specimen #7 from Alkemade et al. (2020b), which was a
75 year old female, non-demented control. At the time the current experiments
were performed, this was the only specimen fully processed. Here, we made the
following assumptions:

1. The optic density of tissue in our silver stains is approximately linearly
related to the concentration of myelin in that tissue in our regions of interest
(see Figure 3.1). Here, we confirmed that silver stains were not saturated

even in the white matter regions;

2. The myelin concentrations in the post mortem specimen do not show gross
abnormalities. We found no indications that our post mortem specimen
showed major abnormalities in myelin properties. We confirmed that the
donor had no clinical record of neurodegenerative disease, a diagnosis that
was confirmed post mortem by a board-certified neuropathologist;

3. The myelin concentrations in white matter reported by Randall (1938) are in
the same range of the myelin concentration in the internal capsule. Similarly,
the myelin concentrations in parietal cortex are in the same range of the
concentrations in insular cortex.

Seven 200 pm coronal sections of a single specimen were stained according to
the method described by Bielschowsky (for details, see Alkemade et al., 2020b).
Sections included the caudate nucleus, thalamus, internal capsule, and insular
cortex, in which we estimated the median intensity of the lightness of the stain (the
optic density). Randall (1938) reports quantified lipid concentrations of the caudate
nucleus and thalamus, which can be directly compared to the stain intensities, as
well as of parietal gray and white matter. The caudate nucleus, thalamus, and
parietal gray and white matter (as reported by Randall (1938)) were not visible in
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the same histological section, and we therefore used insular cortex as a reference
region for gray matter, and the internal capsule as a reference region for white
matter. For each section separately, we then created a linear calibration curve,
which allowed us to determine lipid concentrations based on the stain intensity
(Figure 3.1) for putamen, globus pallidus, subthalamic nucleus, red nucleus, and
substantia nigra.

For the region of which population-averaged iron and myelin contents were
known, we estimated the qMRI values using the MRI data. Median qMRI values
were calculated using the MASSP masks for subcortical regions, and a MGDM
and CRUISE parcellation was used to obtain individual masks for brain stem,
cerebellum, and cortex (Bazin et al., 2014). We included only participants of 30
years and older to match the ages of the specimens on which the iron and myelin
estimates are based. For brain regions for which we had estimated the myelin
content using our post mortem specimen, we only included AHEAD subjects of 70
years and older (17 participants total) to approximately match ages of the MRI
data and the specimen. Tables B.1 and B.2 list the iron and myelin concentrations,
respectively, and their corresponding qMRI values, that were used to estimate the
parameters in Equations 3.1.

To test whether all gMRI metrics were required as predictors to accurately
predict iron and myelin content, we fitted linear models with all eight possi-
ble combinations of R1, R2*, and QSM. Models were fitted using ordinary least
squares (OLS). For each model, we estimated the Akaike information criterion
(AIC; Akaike, 1973) to identify the model that is expected to have the highest
predictive performance, and used the model with lowest AIC values (AIC and
BIC values agreed on the winning model). We used the AIC here instead of the
BIC as the AIC is expected to select models with the highest cross-validated pre-
dictive performance, whereas the BIC is expected to select the data-generating
model (Wagenmakers and Farrell, 2004). The model comparisons, including the
parameterized winning models, can be found in Table 3.1.

Comparisons of the explained variance (R?) of the individual models show that,
when relying on single qMRI metrics, R2* explained most variance in iron (91.6%),
followed by QSM (81.1%). Combining R2* and QSM increased the explained
variance to 94.6%, which implies R2* and QSM largely (but not only) explain the
same variance in iron. Nonetheless, the increase in variance explained acquired
by adding QSM to the R2* model was sufficient to warrant the additional model
complexity, as evidenced by the lower AIC and BIC values.
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Figure 3.1: Procedure of estimating myelin contents using a post mortem specimen. In each section
(seven in total), the stain intensities corresponding to CAU, THA, insular cortex (CTX) and the
internal capsule (ic/wm) were estimated. For each section individually, a calibration curve was
estimated to map stain intensity to myelin values (solid blue lines and equations). Within the
range of interest, the relation between stain intensity and myelin content could be approximated
with a linear trend. Then, within each section separately, the intensity values for putamen
(PUT), GP, STN, RN, and SN were estimated (colored dashed lines; note that not all sections
contained all structures), and the corresponding myelin values were calculated. Per region, the
median estimate (across sections) was used as a final estimate. Boxplots in the right panel show
across-section variability in estimated myelin contents and suggest agreement across sections.
The center line in each box marks the median, box limits are the across-section interquartile
range, and whiskers are at 1.5 times the interquartile range below and above the box limits. ROI
= Region of interest.
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Table 3.1: Model comparisons for the iron (top) and myelin (bottom) approximation models. Bold
face indicates the winning models, which have the lowest AIC and BIC values.

Parameterized model R? AIC BIC
y =8.27718 0.0 117.2952 118.1285
y =-6.83576 + 0.33962 x R2* 09161 77.1614 78.8278
y =-11.25376 + 29.28218 xR1 0.4811 108.1415 109.8079
g y =-3.45436 -9.2427 xR1 + 0.40217 x R2* 0.933 75.3461 77.8458
= y = 4.68168 + 274.40993 x QSM 0.8107 90.9972 92.6637
y =-3.82834 + 0.2431xR2* + 98.27947 x QSM 0.9461 71.6371 74.1368
y =-2.59147 + 11.83574 xR1 + 227.0019 x QSM 0.8651 87.2357 89.7354
y =-2.41386 -5.22683 xR1 + 0.29445 xR2* + 82.01402xQSM  0.9507  72.1302 75.463
y =9.34013 0.0 78.8674 79.4324
y = 4.41227 + 0.09621 x R2* 0.2178 77.6741 78.804
c y =-6.25936 + 21.5651 xR1 0.7746  61.4997 62.6296
5 y=-7.98965 + 31.87483 xR1 -0.11182 x R2* 0.8918 53.963 55.6579
Sy =8.80294 + 25.38923% QSM 00211 805908 817207
y =-0.24058 + 0.25117 x R2* -155.23593 x QSM 0.4399 75.3327 77.0276
y =-7.7523 + 25.33129 xR1 -58.19931 x QSM 0.8616 57.1586 58.8535

y =-7.97876 + 32.10295xR1 -0.11662 x R2* + 3.32451 xQSM  0.8918 55.9549  58.2147

As expected, R1 explained most variance in myelin (77.4%), while R2* explained
only limited variance in myelin (21.78%, only marginally better than an intercept-
only model). However, the combination of R1 and R2* explained 89.2% of variance,
suggesting R1 and R2* do not largely explain the same variance in myelin, but
each explain unique proportions. AIC and BIC values preferred the model that
included both R1 and R2* as predictors.

Figure 3.2 visualizes quality of fit of the winning models. Note that the model
weights cannot directly be compared to the weights from Stiiber et al. (2014), which
were obtained using formalin fixated post mortem tissue. Formalin fixation can
change qMRI values (Birkl et al., 2016; Langkammer et al., 2012; Schmierer et al.,
2008; Shepherd et al., 2009; Tovi and Ericsson, 1992). A second complicating factor
is that gMRI values can vary between MRI sites (Mancini et al., 2020), suggesting
the need to re-estimate model weights when using qMRI obtained at a different
site.

Using these simplified biophysical models, we calculated whole-brain iron and
myelin maps, and obtained participant-specific myelin and iron values for all
structures using the MASSP masks. Iron and myelin maps of a representative
participant are shown in Figure 3.3. To confirm our models are able to reproduce
the between-region variability in iron and myelin that has been reported in the
literature, we compared the myelin and iron predictions to the concentrations in
the literature (Figure 3.4). We also compared the myelin predictions to the myelin
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Figure 3.2: Quality of fit of the myelin (left) and iron (right) model. The planes are given by the
winning models in Table 3.1. Red dots illustrate data points, gray dots are the model predictions
for these data points.

concentrations estimated based on the post mortem tissue. These comparisons
suggest reasonable correspondence between literature-derived and qMRI-derived
iron and myelin concentrations for most regions, but not all. Regions with rel-
atively large discrepancies include the brainstem, which might arise due to the
fact that the iron literature reported concentrations in the medulla oblongata,
whereas the qMRI data delineation included the entire brainstem. Similarly, the
iron literature provided separate estimates for the putamen and caudate, whereas
the qMRI delineations included the striatum as a single region, and as such the
gMRI-derived iron concentrations cannot recover any differences between the
putamen and caudate. Finally, the qMRI-derived myelin estimates are higher than
the post mortem estimates, which might be related to neuromelanin, as this results
in a lower intensity in the post mortem tissue, potentially resulting in a negative
bias in the corresponding myelin estimate.

It is important to emphasize that the iron and myelin estimates we report are
based on simplifying assumptions with regard to the linearity of the relation
between qMRI and iron/myelin, and on the iron/myelin concentrations on which
the biophysical models are fitted (detailed above). As such, the iron and myelin
estimates should be not be interpreted as absolute measurements, but rather as
approximations that serve to guide the interpretations of qMRI values in terms of
the most likely underlying biological contributors to those values.

3.2.5 Thickness estimation

We calculated local structure thickness based on a medial skeleton representation:
for each structure, we estimated the skeleton as the ridge equidistant to the struc-
ture boundaries. Thickness was defined as twice the distance between the skeleton

58



Charting human subcortical morphometry

R1 R2* QSM

Figure 3.3: Example of myelin (left) and iron map (right) of a representative participant. The top
row shows the R1, R2*, and QSM maps, which were linearly combined into myelin and iron maps
(middle and bottom row) using the winning models detailed in Table 3.1. Note the hyperintense
appearance of iron rich structures such as the rounded shape of the red nucleus.
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Figure 3.4: Comparison between qMRI-derived iron (left) and myelin (right) values in our data
and values reported in the literature. For myelin, we also compare the gMRI-derived estimates
to the estimates in the post mortem tissue. Error bars indicate standard deviations. No error bars
are present for the bars representing post mortem tissue, as these come from a single brain.
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and the closest boundary, using the method described in Bazin et al. (2020). In
other words, local thickness measures at every location inside the structure the
distance between the two closest boundaries of that structure, extending the con-
cept of cortical thickness to more complex shapes. Contrary to volume, thickness
can be determined at the position of each voxel within a structure, thus providing
local information. A similar thickness measure was also used in Ho et al. (2020) to

detect subtle shape differences.
3.2.6 Center of mass

For all structures, we calculated the center of masses in Cartesian X, y, and z coor-
dinates per participant after an affine transformation to group space by aligning
each subject to the MNI template with ANTs (Avants et al., 2008) using mutual
information. The affine transformation was necessary to define a common space in
which to compare structure location between subjects. It was preferred over a rigid
or a non-linear transformation in order to correct for inter-individual differences
in intracranial volume and neurocranium shape, while retaining inter-individual

variability in anatomy relative to the neurocranium.
3.2.7 Age-related change modeling

We describe the age-related changes in iron concentration, myelin content, volume,
and thickness, as well as in the center of mass in x, y and z coordinates. For iron,
myelin and thickness, we report both a median reflecting the central tendency
and interquartile range reflecting structure homogeneity. For thickness, the in-
terquartile range reflects the within-structure variability of thickness, quantifying
the regularity of the shape. We also analyzed the R1, R2", and QSM values, which
can be found in the online app (https://subcortex.eu/app).

Exploratory modeling of the between-hemisphere differences per structure
suggested no between-hemisphere difference in aging patterns for most structures.
Therefore, we subsequently assumed that the age-related changes in each structure
were the same in both hemispheres, to reduce the total number of models fitted. We
collapsed across hemispheres by taking the mean value across both hemispheres
per structure and participant.

Prior to fitting the aging models, we excluded outliers based on their Maha-
lanobis distance (cut-off 10.827, corresponding to p < 0.001, 0.69% of all data
points). Per ROI and dependent variable, we then fit the following set of 24 poten-
tial models, with all possible combinations of the following predictors: A linear

influence of age, a quadratic influence of age, sex, an interaction between age

60


https://subcortex.eu/app

Charting human subcortical morphometry

and sex, and an interaction between a quadratic influence of age and sex. We
excluded models with both interaction terms, as this would imply implausibly
large between-sex differences in aging patterns.

Models were fit with OLS as implemented in statsmodels (Seabold and Perktold,
2010) for the Python programming language. Models were compared with the
Bayesian Information Criterion (BIC; Schwarz, 1978), which quantifies the quality
of fit penalized for model complexity. Lower BIC values indicate more parsimo-
nious trade-offs between quality of fit and model complexity and are preferred.
Based on the winning model, we removed influential data points using Cook’s
distance (cut-off 0.2, 0.18% of all data points; we used a more conservative cut-off
than 4/n, which is sometimes recommended [Rawlings et al., 1998]). We then
refitted all models on the data excluding the influential data points, and performed
a new model comparison.

Using the winning age-related change models, we quantified the total age-
related change. Figure 5 illustrates the procedure to estimate this value, which
involves taking the first derivative of the winning model (which quantifies the
mean amount of change on every year), then taking the absolute (which quantifies
the amount of change, irrespective of the direction of change), and then integrating
over the age range of 19 to 75 years old. By integrating over the absolute derivative,
age-related decreases and increases in a metric do not cancel out, but both count
as ‘change’” and sum up across the range of the adult lifespan. To retain the mean
direction of change in the metric, we took the negative of the total age-related
change when the model’s predicted value at 75 was lower than at 19.

The age range under consideration was limited to 75 because our data contains
only one data point older than 75. Extrapolation of fitted regression models
to beyond the range of the original data can lead to biases (e.g., Hahn, 1977),
and since our data only contains one data point older than 75, we deemed it
more conservative to restrict our inferences to the maximum of 75 years old. For
winning models that included sex (or interactions between age and sex) as a
predictor, the total age-related changes were calculated for both sexes separately
and then averaged. Finally, we divided the total age-related change by the model’s
predicted value at 19 years old, in order to quantify the total age-related change
relative to a baseline value.

3.2.8 Confidence intervals and standard errors

Confidence intervals in Figure 3.6 were obtained using a bootstrapping procedure
with 10,000 iterations. We iteratively sampled 105 random observations with
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Figure 3.5: Procedure of estimating total amount of change across the adult lifespan. The left
column shows two example models: One inverted U-shape (median myelin change in the internal
capsule), and one linear increase (median iron change in the amygdala). Formally, change across
ages is given by the first derivative (middle column). To collapse over the direction of change
(increase or decrease), we took the absolute of the derivative (right column). The sum of this
absolute derivative (illustrated by the gray area under the curve) represents the total amount of
change in a region. As a final step (not illustrated), the sum of the absolute derivative is divided
by the model prediction at 19 years old, which represents the total amount of change relative to
the baseline value.

replacement from the data, based on which we estimated the median, and took
the 2.5 and 97.5t" percentile of the 10,000 medians as the 95% confidence interval.
The standard errors in Figure B.4 were obtained using a similar bootstrapping
procedure, in which winning model specifications were iteratively fit on 10,000
random samples (drawn with replacement) from the data. Per iteration, the total
age-related change metrics were estimated. The standard deviation of the total age-
related change metrics across iterations was used as an estimator of the standard
error. For winning models that do not include age as a predictor variable, the
standard error is 0 since the total age-related change metric is 0 in each iteration.

3.3 Results

One hundred and five healthy volunteers were scanned using an ultra-high field
7 Tesla MRI scanner as part of the openly available Amsterdam ultra-high field
adult lifespan database project (AHEAD; Alkemade et al., 2020a). A quantitative,
multi-modal MP2RAGE-ME sequence (Caan et al., 2019) with 0.7 mm isotropic
resolution was used to simultaneously estimate R1, R2" and quantified suscepti-
bility mapping (QSM) values in a single scanning sequence. For each participant,
17 subcortical structures and ventricles (see Table 3.2) were delineated using the
Multi-contrast Anatomical Subcortical Structures Parcellation method (MASSP;
Bazin et al., 2020).
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Table 3.2: Regions of interest. Midline structures were parcellated as a single structure, all
other structures (indicated by bold-faced letters) were parcellated separately per hemisphere.
Abbreviations in italics indicate white matter structures.

AMG: Amygdala SN: Substantia nigra

CL: Claustrum STN: Subthalamic nucleus
fx: Fornix STR: Striatum

GPe: Globus Pallidus Externa THA: Thalamus

GPi: Globus Pallidus Interna VTA: Ventral Tegmental Area
ic: Internal Capsule LV: Lateral ventricle

PAG: Periaqueductal gray 3V: Third ventricle

PPN: Pedunculopontine nucleus 4V: Fourth ventricle

RN: Red nucleus

We analyzed each structure by first estimating the iron and myelin concentra-
tions, using simplified biophysical models that translate the measured R1, R2", and
QSM values into the most likely corresponding iron and myelin concentrations
(see Methods). Note that these concentrations are approximations and do not
reflect measured myelin and iron concentrations (see Limitations section). We ob-
tained both the (within-structure) median of iron and myelin distributions, and the
interquartile range (IQR) which reflects image noise and tissue (in)homogeneity.
Second, we analyzed the structure morphometry by estimating volume and thick-
ness. Thickness is defined as twice the distance between the boundary and the
internal skeleton of the structure. As a local measure (contrary to volume), it is
defined for every voxel in a structure, and it depends on the structure’s shape.
Also for thickness, we determined both the median and IQR, the latter reflect-
ing the regularity of the structure’s shape: Regularly shaped structures (e.g., the
red nucleus) have a similar thickness at each voxel’s location, resulting in lower
between-voxel IQRs compared to complex shaped structures (e.g., the striatum).
Third, we determined the location (center of mass in 3 Cartesian coordinates) of
each structure. Center of mass was determined after applying an affine transforma-
tion to a group template, to account for inter-individual differences in intracranial
volume and shape, while retaining inter-individual variability in distances relative
to the neurocranium.

The distributions of iron, myelin, and volumes revealed a large between-
structure heterogeneity in the human subcortex (Figure 3.6). The globus pallidus
externa and interna, red nucleus, substantia nigra, and subthalamic nucleus
displayed the highest iron concentrations (both median and IQR), corroborating
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earlier reports (Haacke et al., 2005; Hallgren and Sourander, 1958; Ramos et al.,
2014). In line with expectations, low iron concentrations in combination with high
myelin concentrations were observed in the white matter structures under study:
the internal capsule and the fornix. The estimated myelin concentrations of the
subthalamic nucleus, red nucleus, and ventral tegmental area were relatively high,
which causes the limited visibility of these structures on T1-weighted images
(Keuken et al., 2018). For comparison, the estimated myelin concentrations of
the striatum and amygdala were substantially lower, resulting in intensities
comparable to cortical gray matter on T1-weighted images.

The within-structure IQR of iron scaled with the median estimates. This was the
case across participants in all individual structures except for the left claustrum
and left periaqueductal gray (lowest significant Pearson’s correlation coefficient =
0.206 in the right claustrum; highest correlation coefficient = 0.876 in left striatum;
all significant after correction for the false discovery rate at g < 0.05), as well as for
the median and IQR of iron across structures (r = 0.827, t(26) = 7.35, p < 0.001).

Across subjects, the IQR of myelin decreased with increasing median myelin
concentrations for all regions except the left pedunculopontine nucleus, right
substantia nigra, left amygdala, both claustrums, right internal capsule, and fornix
(significant correlation coefficients varied between -0.2183 for the left VTA and
-0.58 for the right periaqueductal gray; all significant after correction for the false
discovery rate at g < 0.05). Across regions, however, no correlation was observed
between the median and IQR of myelin. The fornix had a particularly high IQR
of myelin. This could potentially have been caused by partial voluming with the
lateral ventricles, decreasing the myelin estimates at voxels near the boundary of
the fornix.

3.3.1 Maturation effects

We next studied the age-related alterations in iron, myelin, and morphometry
across the adult lifespan. We fit a set of 24 regression model specifications (with, as
predictor variables, linear and /or quadratic effects of age, plus sex and potential
interactions between sex and age) for all structures and measures individually. As
we had no a priori hypothesis on lateralization, we collapsed across hemispheres to
reduce the total number of fitted models. The model specification that showed the
most parsimonious trade-off between quality of fit and model complexity (as quan-
tified using the Bayesian information criterion; Schwarz, 1978) was considered the
winning model and used for further analyses. To help navigate the winning mod-
els of each structure and measure (including R1, R2", and QSM values), we devel-
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Figure 3.6: Across-participant distributions of within-structure median and IQR of iron and
myelin, and volumes per structure. The center line in each box marks the median, box limits are
the across-participant IQR, and whiskers are at 1.5 times the IQR below and above the box limits.
Error bars drawn inside boxes indicate 95% confidence intervals around the median, obtained
by bootstrapping with 10,000 iterations. Colors indicate hemisphere (LH = left hemisphere,
RH = right hemisphere, Single = structures that are continuous across the hemispheres), mg/100
g = mg iron per 100 g fresh tissue, mm = millimeter.

oped an online interactive app, which is accessible at https://subcortex.eu/app
(see also Figure B.3). Next to in the online app, all winning models (including the
parameterization) can also be found in Figures B.5—B.11.

We observed (median) iron accumulation in all structures except for the claus-
trum, globus pallidus interna, and periaqueductal gray, which instead showed
stable iron concentrations (Figure 3.7). With the exception of the globus pallidus
interna, the iron-rich basal ganglia appeared to accumulate most iron during aging
in absolute terms. The IQRs increased with age for all structures, revealing a global
decrease in structure homogeneity. Since this decrease in homogeneity was also
present in the structures where no median iron increase was observed, it likely
partially reflects an increase in image noise. However, the increases in IQR were
higher in the structures that accumulate most iron (correlation between median
and IQR iron increases across structure r = 0.598, £(12) = 2.584, p = 0.024, two-
sided), suggesting that the (median) iron accumulation for these structures was not
homogeneously distributed within the structure. This decrease in homogeneity
was particularly strong in striatum and the red nucleus.

In line with expectations, we observed a general myelin degradation (see Figure
3.8), except for in the amygdala, claustrum, and substantia nigra, where no alter-
ations in myelin concentrations were detected. The largest (absolute) reduction of

myelin was present in the fornix; the other white matter structure, internal capsule,
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Figure 3.7: Age-related changes in iron content. The meshes are based on the young (18-30 years
old, mean 23; left) and elderly (70-80 years old, mean 73; right) participants after a non-linear
transformation to MNI2009b space. Mesh colors illustrate the model predictions for the median
and IQR of iron distributions at 23 (left) and 73 (right) years old, corresponding to the mean ages
of the participant groups on which the meshes were based. Colors in the top-left meshes of all
structures indicate model predictions at 23 years old. In case the winning model did not include
sex as a predictor variable, the model predictions are shown in black lines; otherwise, green and
orange lines are used for the predictions for women and men, respectively. The total amount of
change in median (Med.) and IQR are shown in each scatterplot. The ventricles are assumed to
have no iron and are excluded from this graph.
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showed a smaller decrease in myelin. The globus pallidus interna, periaqueductal
gray, pedunculopontine nucleus, substantia nigra, and ventral tegmental area
showed slightly higher median myelin concentrations in females than in males.
Like in the case of iron, the increases in IQR of myelin reflected a trend of de-
creasing structure homogeneity across structures. Since these IQR increases were
present for structures that did not show any change in median myelin content,
they likely partially reflect increases in image noise.

Next, we analyzed the effects of atrophy (Figure 3.9). The lateral and third ven-
tricle showed a substantial volume increase with age, which can at least partially
be explained by the filling of the intracranial space created by atrophied brain
tissue. Contrary to expectations, the volume of the fourth ventricle decreased
rather than increased. Inspection of the mesh of the fourth ventricle in the elderly
suggests this may be caused by shrinkage of the superior part. Volume decreases
were also found in the striatum, thalamus, amygdala, ventral tegmental area,
periaqueductal gray, pedunculopontine nucleus, and red nucleus, likely reflecting
atrophy. The internal capsule, fornix and globus pallidus interna showed a small
increase in volume with age, suggesting white matter swelling, which could be
caused by neuroinflammatory processes.

Atrophy of specific subparts of a structure, as a result of increased vulnerability
to atrophy in that part, could result in shape changes (Ho et al., 2020; Raznahan
et al., 2014). Shape changes can be detected by analyzing changes the median
and IQR of thickness, which depend on the structure’s shape. Specifically, when
changes in the median thickness and volume point in the same direction (as is
the case in, e.g., the lateral ventricles, striatum), this suggests overall thickening
or thinning of a structure. Instead, increases in median thickness combined with
decreases in volume can indicate atrophy in a thinner part of the structure, as this
would decrease the amount of voxels with relatively low thickness, increasing the
median thickness. This specific effect appeared to be present in the ventral tegmen-
tal area, pedunculopontine nucleus and periaqueductal gray. Furthermore, in-
creases in IQR indicate decreases in structure regularity, which was observed in the
globus pallidus interna, substantia nigra, periaqueductal gray, pedunculopontine
nucleus, and red nucleus.

A third potential effect of atrophy is a change in the location of individual
structures relative to the neurocranium (Keuken et al., 2017; Keuken et al., 2013;
Kitajima et al., 2008): As the brain atrophies, the resulting physical space is filled
with CSF, leading to location shifts of other brain structures. For the majority of

brain structures under investigation, we observed location shifts in the lateral
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Figure 3.8: Age-related changes in myelin content. The meshes are based on the young (18-30
years old, mean 23; left) and elderly (70-80 years old, mean 73; right) participants after a non-
linear transformation to MNI2009b space. Mesh colors illustrate the model predic
median and IQR of myelin distributions at 23 (left) and 73 (right) years old, corresponding to
the mean ages of the participant groups on which the meshes were based. Colors in the top-left
meshes of all structures indicate model predictions at 23 years old. In case the winning model did
es; otherwise,
green and orange lines are used for the predictions for women and men, respectively. The total
amount of change in median (Med.) and IQR are shown in each scatterplot. The ventricles are

not include sex as a predictor variable, the model predictions are shown in black lin

assumed to have no myelin and are excluded from this graph.
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Figure 3.9: Age-related changes in structure morphometry. The meshes are based on the young
(18-30 years old, mean 23; left) and elderly (70-80 years old, mean 73; right) participants after a
non-linear transformation to MNI2009b space. The lines in each scatterplot visualize the winning
model predictions. In case the winning model did not include sex as a predictor variable, the
model predictions are shown in black lines; otherwise, green and orange lines are used for the
predictions for women and men, respectively. The total amount of change in median (Med.) and
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Figure 3.10: Age-related changes in structure location, posterior view. Meshes were based on the
young (18-30 years old) participants after non-linearly transforming to MNI2009b space. Arrows
depict the model predictions for the location shift, starting at the center of mass of each structure
in MNI2009b space, and pointing to the predicted center of mass of the structure at 75 years old.
The left graph shows all 17 subcortical structures and ventricles under investigation, the right
graph excludes the lateral ventricles, internal capsule, and thalamus, to improve the visibility of
the smaller structures.

and inferior direction (Figure 3.10). The center of mass of the lateral and third
ventricles and the claustrum also shifted in the posterior direction; the fornix and

striatum shifted in anterior direction.

Combined, we observed age-related changes in all measures: iron, myelin,
volume, thickness, and location. These effects were in line with the expected
effects of iron accumulation, myelin degradation, and atrophy, but there appeared
to be strong between-region variability in the degree to which regions change with

age, which we focus on in the next section.
3.3.2 Between-structure variability in maturation

Because the winning models of age-related change trajectories included either
linear or quadratic influences of age, the parameter estimates of the different
models cannot be directly compared. To provide a quantity that summarizes the
amount of age-related change (irrespective of the underlying model specification),
we calculated the sum of the absolute yearly changes between 19 and 75 years old,
relative to the model’s predicted value at 19 years old to take into account baseline
differences (see Figure 3.5).

For each structure, we then plotted the total age-related change per metric as
a radar chart in Figure 3.11, which defines a ‘fingerprint’ of aging per structure.
Formal comparison of these fingerprints by means of a correlation matrix would

require more than 7 metrics to achieve sufficient statistical power and assess
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significance. Here, we are restricted to qualitative comparisons. These fingerprints
suggest strong interregion variability in aging patterns, also within groups of
structures that could be grouped on anatomical grounds such as the basal ganglia.
However, similarities can be found between various individual structures. For
example, the red nucleus and striatum both show strong increases in the IQR of
iron and myelin, combined with increases in median iron and decreases in median
myelin. Additionally, the aging patterns in the thalamus and ventral tegmental
area suggest similarities, with median and IQR iron increases of comparable sizes,
and relative stability on the other metrics. Median and IQR increases in iron
combined with IQR increases in myelin were found in the substantia nigra and
subthalamic nucleus, with the other measures remaining relatively stable. Finally,
some structures including the periaqueductal gray, pedunculopontine nucleus,
and internal capsule appear to remain relatively stable across all metrics.

3.4 Discussion

Interest in the human subcortex is rapidly growing in cognitive and clinical neu-
roscience due to the relevance of subcortical regions as (potential) targets for
DBS and their role in cognition. Here, we studied 17 subcortical structures and
ventricles in terms of their iron and myelin contents, their sizes, as well as the
intricate age-related alterations. Our results highlight the heterogeneity in the
subcortex, presenting the strong variability in iron, myelin, and morphometry
that exists between structures. Furthermore, our results indicate global effects of
iron accumulation, myelin degradation, and atrophy in the subcortex across the
normal adult lifespan, and strong variability in the extent to which the different
structures are affected by each type of age-related change.

To better navigate the rich landscape of subcortical aging, we also share our
results in an online app (Figure B.3, https://subcortex.eu/app) that can be
used to create interactive and intuitive 3D visualizations of the human subcortex
across the lifespan and across modalities. It allows for inspection and reuse of the
underlying models and data of each individual structure. The app was designed
in a flexible way, so that it can be augmented with more structures and contrasts
to expand it to a comprehensive chart of the human subcortex. The underlying
data can readily be downloaded for further analyses.

Understanding the aging processes in the subcortex is paramount in research
and in clinical practice. While iron accumulation and myelin degradation are part
of normal aging processes, increased accumulation and myelin degradation are

part of multiple neurodegenerative disorders including Parkinson’s and Hunting-
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ton’s disease (Andersen et al., 2014; Collingwood and Davidson, 2014; Ward et al.,
2014; Zecca et al., 2004). An accurate description of the distributions of iron and
myelin across the lifespan in health provides a frame of reference against which
pathological iron accumulation and myelin degradation can be contrasted, and
can prove useful in the development of biomarkers for disease (Guan et al., 2017;
Mancini et al., 2020; Martin et al., 2008; Schenck and Zimmerman, 2004; Zecca
et al., 2004).

Iron and myelin are also the two main determinants of MRI contrast. Many
subcortical structures, such as the subthalamic nucleus, cannot readily be dis-
tinguished on conventional T1-weighted MRI images due to a lack of contrast
with nearby regions. Because of the limited visibility of subcortical structures on
conventional MR images, a common practice is to use atlases to locate individual
structures (Devlin and Poldrack, 2007; Evans et al., 2012). Stereotactic atlases
based on post mortem tissue are often used for planning DBS surgery, and proba-
bilistic MRI atlases are conventionally used in cognitive neuroscientific research.
Subcortical MRI atlases are growing in numbers (Keuken et al., 2014; Lau et al.,
2020; Pauli et al., 2018; Trutti et al., 2021; Ye et al., 2021) due to improvements
in MRI resolution and contrasts. However, MRI atlases are typically developed
using anatomical images obtained from young participants, which can cause bi-
ases when such atlases are subsequently used to infer anatomical information in
older participants or patient populations (Evans et al., 2012; Keuken et al., 2013;
Samanez-Larkin and D’Esposito, 2008). In cognitive neuroscience research, it is
common to apply spatial normalization procedures to a group space to account for
individual differences in anatomy, but consistent deviations from the group tem-
plate are likely to introduce normalization errors (Samanez-Larkin and D’Esposito,
2008). These biases can result from iron accumulation and myelin degradation
(which change the contrast of images) and from atrophy (which change the size
and the location of structures). Our results can help understand the biases that
could occur when conventional MRI atlases, based on young participants, are
used to analyze data from older participants, and call for the development of
age-specific MRI atlases of the subcortex to remedy these biases.

The between-region variation in iron contents has important consequences
for blood oxygenation level dependent (BOLD) functional MRI. Because iron
decreases T2 relaxation times, on which contrast-to-noise ratios (CNR) of BOLD-
fMRI sequences depend, BOLD CNR varies substantially between regions. For
instance, within young participants, the CNR in the red nucleus is expected to

be 74% lower than in the amygdala, when using an echo time of 42 ms at7 T
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(corresponding to the T2 of the amygdala in young participants), solely due to
the differences in T2 (see supplement for details). Age-related alterations in iron
contents can have similar effects. For instance, the CNR in the red nucleus at 50
years old is 32% lower than at 19 years old when using an echo time of 18 msat7 T
(corresponding to the T2" of the red nucleus at 19 years old). Thus, iron deposition
can confound fMRI studies into age-related changes of BOLD responses.

However, substantial gains in CNR can be achieved by optimizing the echo
time to meet the specific requirements of studying a structure of interest (see also
Hollander et al., 2017; Mileti¢ et al., 2020). For instance, when targeting the red
nucleus, decreasing the echo time to 18 ms (corresponding to the T2" of the red
nucleus at 19 years old) is expected to lead to a 62% higher CNR compared to an
echo time of 42 ms (which would be optimal to target the amygdala). Similarly, the
echo time can be adjusted to partially mitigate the effects of age-related changes in
T2": By decreasing the echo time from 18 ms to 13 ms (corresponding to the T2 of
the red nucleus at 50 years old), a modest 6% increase in CNR can be expected.
Using our online app as a resource for participant-specific predictions of R1, R2”,
and QSM values, we envision the use of MRI protocols tailored to the structure of
interest and the participant’s age and sex.

3.4.1 Comparison with previous aging studies

The majority of previous subcortical aging studies focused on volume metrics.
Direct comparison with other studies is hindered by differences in anatomical
region definitions (e.g., striatum versus putamen and caudate, entire pallidum
versus internal and external segments), delineation methods, modeling approaches
(parametric versus non-parametric), and differences in age ranges (see also Coupé
et al., 2017; Walhovd et al., 2016), although our results fall in line with previous
reports.

The thalamus and striatum are studied most often and have consistently been
reported to decrease in volume across the adult lifespan. Studies differ, however,
in the shape of the reported trajectories: Some suggest quadratic or cubic volume
decreases in both thalamus (Coupé et al., 2017; Dima et al., 2021; Potvin et al., 2016;
Tullo et al., 2019; Wang et al., 2019) and striatum (Coupé et al., 2017; Potvin et al.,
2016; Tullo et al., 2019), others show linearity or suggest approximate linearity
(Fjell et al., 2013; Sullivan et al., 2004; Walhovd et al., 2011; Wang et al., 2019). In
concordance with the latter reports, our data suggest linear volume decreases,
although we cannot rule out that small non-linear trends are present that we could

not detect with our sample size.
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Other subcortical structures previously studied include the globus pallidus, for
which linear and quadratic volume decreases have been reported (Coupé et al.,
2017; Fjell et al., 2013; Goodro et al., 2012; Tullo et al., 2019; Walhovd et al., 2011;
Wang et al., 2019), although not consistently: Other studies have reported stable
volumes across age (Inano et al., 2013; Jernigan et al., 2001). Our data suggested a
stable volume in the external part of the globus pallidus, but we found a volume
increase in the internal part (c.f. Keuken et al., 2017, who found volume increases
in the external part). In the amygdala, we found quadratic volume decreases.
Recent large-sample studies (Coupé et al., 2017; Dima et al., 2021) suggest that the
amygdala volume remains stable between approximately 20-70 years old, and
then declines. This implies that the maturation pattern strongly depends on the
age range studied, which could explain the discrepancies in results from earlier
studies that reported stable volumes (Jernigan et al., 2001), and linear (Narvacan
etal., 2017; Walhovd et al., 2011; Wang et al., 2019) and quadratic (Goodro et al.,
2012; Inano et al., 2013) volume decreases.

Volume increases in the lateral ventricles have been shown to be quadratic
previously (Inano et al., 2013; Walhovd et al., 2005; Walhovd et al., 2011; see also
Goodro et al., 2012). While our thickness estimates indeed suggest quadratic
increases, the volume estimates instead indicate linear increases. Earlier reports
on volume changes in the fourth ventricle are not consistent: Some studies have
reported volume increases (Walhovd et al., 2005) or stable volumes in the fourth
ventricle (Inano et al., 2013; Keuken et al., 2017; Walhovd et al., 2011). Here, we
found a volume decrease in the fourth ventricle.

While our method of estimating iron contents has not been used to study aging
before, our results can be compared to studies focusing on (qQ)MRI markers of iron.
Daugherty and Raz (2013) provided a meta-analysis of early (q)MRI studies on iron
accumulation in the caudate, red nucleus, and substantia nigra, and concluded
that iron accumulates in these regions. The underlying studies used R2(*), the
field-dependent increase in R2, and phase information based on susceptibility
weighted imaging (SWI) as markers for iron. Later studies employing QSM and
T2*/R2* are generally consistent with these findings (Acosta-Cabronero et al., 2016;
Betts et al., 2016; Callaghan et al., 2014; Keuken et al., 2017; Li et al., 2021; Zhang
et al,, 2018; but see Khattar et al., 2021, who report no change in these areas). In
line with these reports, our results suggest iron accumulation in these regions,
specifically in inverted U-shaped trajectories.

Studies on iron accumulation in other subcortical regions have varying and
sometimes conflicting conclusions. Daugherty and Raz (2013) also suggested iron
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accumulation in the globus pallidus. Our data found linear iron accumulation
in the external, but no change in the internal segment. In contrast, Keuken et al.
(2017) reported no change in T2* or QSM for the external segment (potentially
indicating stable iron concentrations). They did report a T2* increase (which
could indicate iron decreases) and stable QSM in the internal segment. Khattar
et al. (2021) showed no change the SWI phase in the (entire) globus pallidus, in
line with the findings from Li et al. (2021) who studied QSM as an iron marker.
Our results suggest linear iron accumulation in the amygdala as well. Based on
QSM, Acosta-Cabronero et al. (2016) instead reported stable iron contents in the
amygdala (similar to Zhang et al. (2018), although the difference in age ranges
under study hinders direct comparison). Finally, we also found inverted U-shaped
iron trajectories in the thalamus. Khattar et al. (2021) found decreasing SWI phase
in thalamus (suggesting iron increases), but Li et al. (2021) showed decreasing
QSM values in the thalamus which instead suggests iron decreases.

Most earlier studies focusing on age-related change in myelin used the ratio of
Tlw/T2w as a myelin marker, which is controversial (Arshad et al., 2016; Glasser
and Van Essen, 2011; Grydeland et al., 2019; Uddin et al., 2018; Uddin et al,,
2019). Inverted U-shape trajectories of T1lw/T2w have been reported in both
cortex (Grydeland et al., 2019), and in the striatum and pallidum (Tullo et al.,
2019). Our data instead suggest quadratic but monotonic decreases in myelination
in these areas. Other microstructure markers include DTI-derived metrics such
as fractional anisotropy and mean diffusivity, which suggested linear declines
in microstructure of the thalamus, putamen, and caudate (Cherubini et al., 2009;
Wang et al., 2010). Similarly, Callaghan et al. (2014) used magnetization transfer
as a microstructure marker in the thalamus and caudate, which also suggested
linear declines. Our results for the white matter tracts showed demyelination in
fornix and the internal capsule, the pattern of which is qualitatively in line with
earlier studies (Lebel et al., 2012; Madden et al., 2012) that analyzed DTI measures
in white matter tracts.

More recently, myelin-water fraction (MWEF; MacKay et al., 1994) estimation
is gaining popularity as a proxy for myelin. Arshad et al. (2016) demonstrated
that MWF in the internal capsule shows an inverted U-shaped age-related change
trajectory, which shows qualitative similarity to our results in the internal capsule.
Finally, Khattar et al. (2021) used MWF to analyze subcortical nuclei, which sug-
gested inverted U-shaped aging trajectories across many subcortical regions, even
for those where our results suggested stable myelin contents or monotonically

decreasing trends.
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3.4.2 Limitations

The present study has several limitations. A first limitation is the estimation
of iron and myelin, which was done using simplified biophysical models that
translate gMRI contrast values into the most likely underlying iron and myelin
concentrations. The basic assumption underlying these models is that gMRI
values are linearly related to iron and myelin concentrations. This is supported by
previous studies (Mangeat et al., 2015; Marques et al., 2017; Metere and Moller,
2018; Rooney et al., 2007; Stiiber et al., 2014).

Stiiber et al. (2014) fit the parameters of their linear models using the iron,
myelin concentrations and qMRI values in a single post mortem specimen, across
many voxels. Metere and Moller (2018) generalized this approach by fitting the
linear models on population-average myelin, iron concentrations and qMRI values,
across many regions. The literature on the population-average iron and myelin
concentrations, however, is sparse, especially in the case of myelin. This sparsity
required us to estimate myelin contents of several subcortical regions using a
post mortem specimen, which in turn required additional simplifying assumptions.
The lack of a well-established, quantified ‘ground truth’ of myelin concentrations
across the human brain is a limitation not only for the accuracy of the estimated
calibration curve, but also prevents us from validating our results directly against
it.

Our myelin estimates can be validated indirectly by qualitative comparison
with observations from earlier reports that rely on other methods. While there is
currently no exact qMRI marker of myelin, the aforementioned MWF estimation
(MacKay et al., 1994) has been shown to be a relatively accurate method (Mancini
et al.,, 2020). Khattar et al. (2021) reported MWF estimates in subcortical regions,
and consistent with our results, their data suggest that myelin concentrations
in subcortical gray matter regions may exceed myelin concentrations of cortical
gray matter. Similarly, comparison with histology suggests that optical densities
of myelin stains in deep gray matter regions such as the thalamus and globus
pallidus are higher than cortical gray matter (e.g., Hametner et al., 2018).

Despite their limitations, our estimates of iron and myelin —compared to qMRI
values— offers a distinct advantage in terms of interpretation. Multiple previous
studies (reviewed above) into age-related changes aim to infer changes in iron
concentrations by relying on a single (qQ)MRI metric such R2* or QSM, but R2* (Li
et al., 2009) and QSM (e.g., Hametner et al., 2018; Liu et al., 2015) have been shown
to also correlate with myelin concentrations (see also Daugherty and Raz, 2015).
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Similarly, there currently exists no perfect method to estimate myelin contents in
vivo (Mancini et al., 2020), and while R1 covaries with myelin, studies suggest
that it also covaries with iron (Ogg and Steen, 1998; Rooney et al., 2007; Stiiber
et al., 2014; but see Steen et al., 2000). As such, disentangling the contributions
of iron and myelin to gMRI contrasts requires simultaneously consideration of
multiple gMRI contrasts at once. Future studies that quantify iron and myelin
concentrations across the brain, for example using systematic chemical assays or
advanced microscopy (e.g. Brammerloh et al., 2021) on post mortem materials, can
provide key information to validate and further improve upon our modelsFinally,
gMRI measurements are also prone to biases, for instance B1 inhomogeneities in
R1 mapping (Haast et al., 2016), which are recalibrated when transforming qMRI
values to myelin and iron estimates.

A second limitation is that the number of structures included in these studies
is still limited. We intend to expand the number of structures in our future
efforts. The hippocampus is of particular interest in the context of aging due to
its well-known atrophy associated with cognitive decline and neurodegenerative
disease (Bettio et al., 2017). However, given its cortical origin, the hippo-campus
has not been prioritized in this research and at present cannot be delineated by
the MASSP algorithm. Since gold standard manual delineations have not been
performed on the present data, we are currently unable to confirm the reliability
of other algorithms for hippocampal delineation on our specific data. We intend
to incorporate the hippocampus in MASSP in a future study.

Third, we cannot exclude age-related changes in parcellation accuracy. This is
a general problem with aging studies, as parcellation accuracy tends to decrease
with age due to decreased contrast between structures, even when structures are
delineated manually. We relied on the MASSP algorithm (Bazin et al., 2020) to
parcellate the 17 subcortical regions and ventricles in each participant individually.
The performance of MASSP, like manual delineations, varies per structure, and
depends on structure size and contrast (Alkemade et al., 2021). Compared to
manual delineations, the performance of MASSP also tends to decrease with
age. Fortunately, the impact of age-related biases in parcellation was shown to
be limited for the quantitative MRI measures (Bazin et al., 2020) on which the
iron and myelin estimates are based, suggesting that the age-related changes in
myelin and iron are unlikely to be caused by age-related differences in parcellation
performance. On the other hand, size estimates (volume and to a lesser extent
thickness) are more susceptible to the age-related changes in parcellation quality.

Here, we used an improved version of MASSP to mitigate these effects and could
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observe increased delineation accuracy for ventricles, fornix, claustrum, GPi and
VTA (see Figure B.2). However, a replication of the age dependency study of
Bazin et al. (2020) using the improved version of MASSP did not show much
improvement in the consistency of thickness and volume estimate in smaller
structures, where we cannot exclude age-related decreases in parcellation accuracy.
While other automated parcellation algorithms incorporate certain structures of
interest (such as the hippocampus, see above), we are not aware of any algorithm
that can parcellate the same breadth of subcortical regions on gMRI data as MASSP.
Future developments of MASSP or other algorithms might improve parcellation
accuracy and thereby improve the robustness of models of age-related changes.

Finally, we are limited to descriptions of the age-related changes that result from
iron accumulation, myelin degradation, and atrophy. While our results indicate a
between-region heterogeneity in the age-related changes, they do not explain why
certain regions appear to change more than others with increasing age. Similarly,
we did not study the specific relation between qMRI metrics and morphometry
(Lorio et al., 2016; Tardif et al., 2017; Weiskopf et al., 2015).

3.4.3 Conclusions

Our results extend previous studies into aging patterns of the subcortex, which
focus on a smaller number of typically large subcortical areas, often based on MRI
with lower field strengths (Aquino et al., 2009; Cherubini et al., 2009; Daugherty
and Raz, 2013; Daugherty and Raz, 2016; Fjell et al., 2013; Greenberg et al., 2008;
Herting et al., 2018; Keuken et al., 2017; Khattar et al., 2021; Li et al., 2014; Raz, 2004;
Raz et al., 2005; Raz and Rodrigue, 2006; Raznahan et al., 2014; Walhovd et al., 2005;
Wang et al., 2019). Experiments using very large numbers of participants detected
complex nonlinear age-related changes in some subcortical structures (Coupé
et al.,, 2017; Dima et al., 2021; Fjell et al., 2013). Our study had a more modest
sample size, which did not allow to evaluate complex non-linear trends. On the
other hand, by leveraging an open database of ultra-high field 7 T quantitative
MRI, we could provide a first view on many structures and variables at once,
which may be refined as more 7 T quantitative MRI data sets become available. As
such, our study provides a richer and more extensible description of subcortical

composition, morphometry and aging.
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Cortical and subcortical contributions to interference resolution
and inhibition — an fMRI ALE meta-analysis
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Abstract

Interacting with our environment requires the selection of appropriate responses
and the inhibition of others. Such effortful inhibition is achieved by a number
of interference resolution and global inhibition processes. This meta-analysis
including 57 studies and 73 contrasts revisits the overlap and differences in brain
areas supporting interference resolution and global inhibition in cortical and
subcortical brain areas. Activation likelihood estimation was used to discern
the brain regions subserving each type of cognitive control. Individual contrast
analysis revealed a common activation of the bilateral insula and supplementary
motor areas. Subtraction analyses demonstrated the voxel-wise differences in
recruitment in a number of areas including the precuneus in the interference
tasks and the frontal pole and dorsal striatum in the inhibition tasks. Our results
display a surprising lack of subcortical involvement within these types of cognitive
control, a finding that is likely to reflect a systematic gap in the field of functional
neuroimaging.
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4.1 Introduction

Cognitive control as a whole describes an array of processes required for optimal
and adjustable human behaviour and decision-making (Aron, 2007; Botvinick
et al., 2001). Under this umbrella of cognitive control are two associated but inher-
ently distinct mechanisms that aid in supporting the ability of goal-directed be-
haviour; interference resolution and global inhibition (Nigg, 2000). These concepts
have drawn the attention of psychologists since the late 19th century (Bergstrom,
1894), where the terms were initially used interchangeably but due to clinical
psychology and neuroscience results it became apparent that these are two related
but functionally diverse phenomena (Nee et al., 2007). In general, global inhibition
is defined as the global dampening of an already initiated or no longer relevant
action (Aron, 2007). Interference resolution is considered a more selective inhibi-
tion process, where task-irrelevant stimuli and goal-irrelevant responses must be
dampened but relevant responses maintained (Nigg, 2000). In the past, both these
types of inhibition processes have been largely studied independently. Global
inhibition has commonly been investigated using the Stop-Signal task (Logan and
Cowan, 1984) or the Go/No-Go task (Donders, 1969), which overlap in terms of
global inhibition but differ with respect to the underlying proactive or reactive
mechanism. Interference resolution has been largely studied through the use of
the Eriksen-Flanker task (Eriksen and Eriksen, 1974), Stroop task (Stroop, 1935),
Simon task (Simon and Rudell, 1967) and multi-source interference task (Bush
et al., 2003).

Generally agreed upon theories of the biological architecture underlying these
types of cognitive control rest on the involvement of both the cortex and sub-
cortex (Albin et al., 1989; Aron et al., 2016; Nambu et al., 2002; Neumann et al.,
2018; Wiecki and Frank, 2013). It has long been hinted that a cortico-striatal loop
modulates the capacity of interference resolution (Mink, 1996; Utter and Basso,
2008), and there is evidence that the STN plays a key role in the net-inhibition of
inappropriate movements (Beauregard and Lévesque, 2006; Forstmann et al., 2012;
Frank, 2006; Keuken and Forstmann, 2015; Wessel et al., 2019). Recent studies have
found evidence that the fronto-striatal network supports the ability to selectively
inhibit such movements (Schmidt et al., 2018; Schmidt et al., 2020), in line with
theories suggesting that the basal ganglia modulate these cortical pathways to
some extent (Alexander et al., 1986; Mink, 1996; Utter and Basso, 2008). Another
source of evidence for the involvement of subcortical areas in interference reso-

lution and global inhibition comes from intracranial recordings studies. There
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is a sizable and growing body of literature showing the involvement of the STN
in stopping ongoing action as a result of surprising events as well as mediates
post-error slowing in subsequent trials e.g,(Alegre et al., 2013; Bastin et al., 2014;
Benis et al., 2014; Brittain et al., 2012; Cavanagh et al., 2014; Fischer et al., 2017;
Kelley et al., 2018; Kiihn et al., 2004; Ray et al., 2012; Siegert et al., 2014; Wessel
et al., 2016a; Wessel et al., 2016b; Zavala et al., 2013; Zavala et al., 2014). Yet, time
and time again, these deeper regions are often underrepresented in fMRI studies
and as a result the meta-analytical evidence for subcortical involvement in inter-
ference resolution is limited e.g., (Chen et al., 2018; Nee et al., 2007). As previous
recognized, this appears to be an accidental by-product of imaging techniques and
accessibility to more sensitive hardware (Forstmann et al., 2016; Johansen-Berg,
2013; O’Callaghan et al., 2014). Studying the contribution of subcortical nuclei
with MRI is inherently more difficult than the cortex simply due their distance to
the head coils. Lower field strengths are further disadvantaged due to the lack
of penetration and therefore sensitivity here (Collins and Smith, 2001; Vaughan
et al., 2001). The picture is further complicated by the need for specific contrasts in
order to be able to accurately delineate some of these iron-rich nuclei such as the
STN and SN (Kerl et al., 2012; Keuken et al., 2017; Keuken et al., 2018; Shroff et al.,
2009). Due to the differences in iron content the subcortex also requires slightly
different fMRI acquisition parameters to optimize the BOLD contrast sensitivity
e.g., (Hollander et al., 2017; Mileti¢ et al., 2020).

The goal of this meta-analysis is to investigate the overlap and differences
in cortical and subcortical contributions to recent fMRI studies of interference
resolution and global inhibition. A number of fMRI meta-analysis on the topic of
cognitive control have been conducted in the past e.g., (Cieslik et al., 2015; Criaud
and Boulinguez, 2013; Gavazzi et al., 2020; Guo et al., 2018; Huang et al., 2020;
Hung et al., 2018; Niendam et al., 2012; Rae et al., 2014; Song et al., 2017; Swick
et al,, 2011; Xu et al., 2016; Zhang et al., 2017). However, as a number of these
meta-analysis either included a low number of studies (Eickhoff et al., 2016; Miiller
et al., 2018), used a software version of gingerALE that was later shown to contain
a number of implementation errors (Eickhoff et al., 2017; Garrison et al., 2019), or
included studies from the early 90’s and early 00’s that used 1.5T MRI (Hollander
et al., 2017; Krasnow et al., 2003; van der Zwaag et al., 2009). As such it is perhaps
not surprising that the meta-analytical evidence for the subcortical involvement is
limited.

Here, we set out to compare activation patterns in the tasks used to tap into

these two subtypes of cognitive control, with a main focus on subcortical involve-
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ment. To that end we employed a fairly strict list of inclusion criteria to facilitate
the inclusion of studies for which it was a priori conceivable that they reported
subcortical activations with high anatomical precision. Accordingly, we only in-
cluded studies from the last decade, that employed a high spatial resolution fMRI
acquisition protocol on 3T or higher field-strength MRI with little smoothing. To
maximize the number of studies given these demanding criteria, we conducted a
comprehensive literature search for experiments investigating interference and
inhibition tasks and convolved the results using activation likelihood estimation
(ALE).

4.2 Materials and Methods

4.2.1 Comprehensive literature search
4.2.1.1 Paradigms included

We included six different paradigms in the meta-analysis that are thought to
tap into interference and inhibition mechanisms, namely the Eriksen Flanker,
Simon, Stroop, Multi-Source Interference, Go/No-Go and Stop-Signal tasks. The
selection of tasks was based on a number of previous meta-analysis focussing on
interference and inhibition (Hung et al., 2018; Li et al., 2017; Nee et al., 2007; Song
etal., 2017; Swick et al., 2011).

Interference tasks

Eriksen Flanker task: a paradigm in which participants are shown a central
target stimulus flanked by a number of adjacent distractors. The participants
are instructed to press a button associated with the target stimulus. A trial is
congruent if the distractors are identical to the central target stimulus, whereas
the trial is incongruent if the distractors differ from the target stimulus.

Simon task: a paradigm in which participants have to respond to a given
stimulus with a given button press, irrespective of the location of the stimulus.
The trial is congruent if the location of the stimulus is on the same side as the
correct response hand, whereas the trial is incongruent if the stimulus is on the
contralateral side of the correct response hand.

Stroop task: in the classic Stroop task participants have to read a word while
ignoring the font colour. The trial is congruent if the meaning of the word and the
font colour are identical, whereas the trial is incongruent if they differ. Since the

original paper in 1935 several variants such as the numerical and affective Stroop
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task have been developed. We chose not to discard any Stroop variants as we were
interested in general inhibition and interference processes.

Multi-source interference task: a paradigm in which different aspects of the
Stroop, Eriksen Flanker and Simon tasks are combined. Participants are shown
three different items and are instructed to indicate which item differs from the
other two by pressing a button. Depending on the relative font size, type of
distractor or location of the target relative to the response finger a trial is either
congruent or incongruent.

Inhibition tasks

Go/No-Go task: a paradigm in which participants have to respond to a frequent
go stimulus while withholding their response to an infrequent no-go stimulus.
Due to the frequent nature of the go stimuli, a prepotent response needs to be
suppressed during the no-go stimulus.

Stop-Signal task: a paradigm in which participants need to respond to a given
stimulus while having to inhibit their response when an infrequent stop signal is
subsequently presented.

4.2.1.2 Inclusion criteria

All of the articles found by the query search were read by two raters (SJSI and
MCK) and either kept or discarded based on our predetermined inclusion criteria:

1. the study was published in a peer-reviewed English language journal be-
tween the 1st of January 2010 and the 4th of May 2020 (date of the query),

2. the study employed fMRI in healthy adults; the results obtained from pa-
tients and children (17 years and younger) were excluded. When studies
with patients included a healthy control group, the data of these healthy con-
trols were included if the results were reported separately or if the authors
provided us with the necessary information upon request,

3. participants engaged in a Eriksen Flanker, go/no-go, multi-source interfer-
ence, Simon, stop-signal or Stroop task where the following contrasts were
reported or provided by the authors on request:

¢ Eriksen Flanker: Incongruent > Congruent
* Go/No-Go: no-go > go

* Multi-Source interference task: Incongruent > Congruent
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¢ Simon: Incompatible > neutral; Incompatible > Compatible
* Stop-signal task: successful stop > go

¢ Stroop: Incongruent > neutral; Incongruent > Congruent

For all contrasts, if there was an affective manipulation, we only included

the neutral or control trials.
. the event related fMRI data was acquired at 3 Tesla (T) or above,

. the fMRI images were acquired whole brain at a resolution of 3mm or lower,
where the voxel geometry was isotropic or near-isotropic (e.g. less than 10%
deviation along the three edges of the voxel. This means that a voxel size of
2.5x2x5x3.0 is excluded but 2.5x2.5x2.75 is included (Mulder et al., 2019). The

voxel size was determined without taking the interslice gap into account.

. a GLM voxel-based approach was used to statistically analyse the f{MRI data
while using a maximum Gaussian smoothing kernel of 8mm FWHM. This
maximum smoothing kernel is between 2-3 times the maximum size of the
voxel and is thought to be a reasonable trade-off between robust statistical
group level results and the reduction of anatomical specificity (Mikl et al.,
2008; Pajula and Tohka, 2014).

. the whole-brain activations are reported as 3D coordinates in stereotactic

space of Talairach or the Montreal Neurological Institute (MNI),

. single-subject reports and experiments where the between-group effects

relate to handedness, sex and genotype were excluded.

All relevant reviews and meta-analysis that were included in the above search

were identified based on their abstract and cross-referenced to identify other

potential empirical papers.

4.2.1.3 Search strategy

An exhaustive literature search was conducted using the PyMed and Neurosynth

python modules within Python. PyMed is a search tool use for querying the
PubMed database. The Neurosynth module queries the Neurosynth fMRI
database. The query date for both searches was 4th May 2020. The following

keyword terms were used to query the PubMed database using the Entrez

query tool from the Bio module in Python: "interference", "interference control”,

"conflict", "conflict control”, "cognitive control”, "stroop"”, "simon", "flanker",
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"non

"stop-signal", "stop signal", "stop task", "stop-signal reaction time", "stop signal
reaction time", "go/no go", "go no go", "go-no go", "go/nogo", "go/no-go",
"go-no-go", "selective inhibition", "global inhibition", "inhibition", "response
inhibition", "inhibitory control”, "multi source interference task", "msit" and
"multi-source interference task". These keywords were coupled with further
search terms to limit our results to only fMRI studies: “fmri”, “functional mri”
and “functional magnetic resonance imaging”. Due to the co-occurrence search
strategy that PubMed uses; we used all combinations of these two search term
lists (81 in total) to ensure that we found as many potential articles as possible.
For Neurosynth, we queried the database using both their innate feature list and
also searching their abstracts using our custom keywords. Since Neurosynth only
archives fMRI studies, we only used the first list of terms given above to query the
database.

The PubMed query resulted in 26.391 unique abstracts, the Neurosynth query
in 1.832 unique abstracts. After removing abstracts that were published before
2010 and abstracts that were found through both database searches, a total of
19.598 unique abstracts were identified. Raters 1 and 2 (SJSI and MCK) read and
rated all unique abstracts, with an inter-rater reliability (IRR) score of 0.69, 18.526
articles were excluded based on this. The 410 abstracts that were not agreed upon
were rated again by both raters, with an IRR = 0.72, a further 261 abstracts were
excluded based on this. During the abstract rating, any review or meta-analysis
articles were kept for their references to be cross-referenced with the articles that
the raters had decided as being eligible for inclusion. 56 previous reviews or
meta-analyses were found, and each rater independently checked 28 each, with
476 unique references found within them (that were not already part of the initial
database search). Both raters then read and rated the abstracts of these articles,
with an IRR=1.00. Both raters agreed that none of these new abstracts met the
inclusion criteria for the study, and therefore were all excluded. This suggests that
most, if not all, relevant studies were found in the initial database search. The IRR
scores at the three different interrater stages all indicated substantial or higher
levels of agreement between the two raters (Landis and Koch, 1977). A factor
contributing to the lower IRR at the first stage (IRR = 0.69) was that one of the
raters included abstracts using the anti saccade task, whereas the other rater did
not. As this task was not part of our predetermined list of inclusion criteria, these
abstracts were excluded in the second stage, and contributed to a slightly higher
IRR of 0.72.
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This process left 755 full-text articles for the raters to assess. Of these, 5 were
immediately excluded for being duplicates or written in a non-English language.
Each rater took half of the remaining 750 articles each, to evaluate, resulting in 632
exclusions. This left 118 studies to be included in the ALE meta-analysis, based
on whether the articles had the required information, or the authors were able to
provide the required data necessary for the analysis. After mining the information
accessible in the original articles and contacting the authors where required, we
included 57 studies and 73 contrasts in the final analysis.

See Figure 4.1 for an overview of the selection and inclusion process and Table
4.1 for a short description of the included studies.

Records identified through Records identified through
PubMed search (N = 112056) Neurosynth search (N = 3429).
Keywords given in methods.

e * N

Records after duplicates
removed (N=19598).

. * )
e N
Records after abstract screening
by both raters (N=425, Records excluded
IRR=0.69). (N =18526).
Screen abstracts Y,

not agreed upon
again (N =410).

Records after adding h
rescreened abstracts (N=755, | 3, Records excluded
- ; i (N=261).
IRR=0.72). 56 previous reviews

found for cross-referencing. )

* Cross-reference against
( h i i (N=476)
Records after adding cross-ref- previous reviews (V= )

erenced articles (N=755,

L IRR=1.00). /\ Records excluded

(N =476).
* N\

Records after removing
duplicates or articles in

non-English language (N=750). Records excluded

(N=5).
Each rater checked

N=375 full texts
each for eligibility. A

Eligible records found to be Records excluded
included in ALE (N=118). (N =632).

2

s N

Total number of experiments

(N=157) and contrasts (N=73)
included in ALE.

\ J

Figure 4.1: The selection procedure for the inclusion of empirical studies. The flow of information
illustrates the different steps used in the meta-analysis to identify the relevant empirical studies
and is based on the PRISMA flow-diagram (Liberati et al., 2009). In between brackets the number
of unique papers (N) and the interrater reliability score (IRR) are shown where relevant.
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4.2.2 Activation likelihood estimation
4.2.2.1 Contrasts

Given the number of studies that we identified, we were able to compute the
following main interference and inhibition contrasts (Eickhoff et al., 2016): Incon-
gruent > Congruent (based on 25 studies with 29 experiments, 387 foci and 834
unique subjects) and Stop | NoGo > Go (32 studies with 44 experiments, 945 foci
and 865 unique subjects). While there were too few studies per task to warrant a
robust comparison between the different tasks, an exploratory comparison was
done between the Go/No-Go and Stop-Signal tasks. There were four studies
which reported the coordinates in Talairach space and were converted to MNI
using the Lancaster transform as implemented in GingerALE (V.3.0.2; (Lancaster
et al., 2007)).

4.2.2.2 NiMARE parameters

An activation likelihood estimation (ALE; (Eickhoff et al., 2012; Fonov et al., 2011;
Fonov et al., 2009; Turkeltaub et al., 2002; Turkeltaub et al., 2012) meta-analysis was
performed using NiMARE (V.0.0.5; (Salo et al., 2020). Modeled activation maps
were generated for each experiment by convolving each focus with a Gaussian
kernel determined by sample size. For voxels with overlapping kernels, the maxi-
mum value was retained. The modeled activation maps were rendered in MNI
152 space (Fonov et al., 2011; Fonov et al., 2009) at 2x2x2mm resolution. A map of
ALE values was then computed for the sample as the union of modeled activation
values across experiments. Voxel-wise statistical significance was determined
based on an analytically derived null distribution using the method described in
(Eickhoff et al., 2012), prior to multiple comparisons correction. A cluster-forming
threshold of p < 0.001 was used to perform cluster-level FWE correction. 10.000
iterations were performed to estimate a null distribution of cluster sizes, in which
the locations of coordinates were randomly drawn from a grey matter template
and the maximum cluster size was recorded after applying an uncorrected cluster-
forming threshold of p < 0.001. The negative log-transformed p-value for each
cluster in the thresholded map was determined based on the cluster sizes. See
Figure 4.2 for a schematic of the ALE method employed for the main contrasts.
Following dataset-specific ALE meta-analyses, a subtraction analysis with 10.000
iterations was performed to compare the two datasets according to the procedure
from (Laird et al., 2005). In short, the subtraction analysis entailed that all ex-
periments that contributed to the initial contrast were pooled and randomized

over two groups. The ALE values for these two randomly assigned groups were
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then calculated, and the difference between these ALE values was recorded per
voxel. This process was repeated 10,000 times and resulted in a null distribution
for the difference in ALE values. The actual observed difference between the two
contrasts was then compared to the null-distribution and resulted in a Z-value
map. As there is no established method for multiple comparison corrections for
ALE difference maps a conservative threshold of p < 0.001 was used to extract the
clusters (Eickhoff et al., 2011). Note that contrary to GingerALE the subtraction
analysis in NiIMARE considers all voxels instead of only evaluating the voxels that
were significant in the main contrasts. As such the subtraction analysis looks at
the whole brain difference between the two contrasts and can result in clusters
that were not found in the main ALE contrasts. The table of clusters was extracted
using AtlasReader (V.0.1.2; (Notter et al., 2019)) using the resulting Z-map, a re-
spective threshold of 1.645 or 3.091 for the main and subtraction analysis which
corresponds to the one-sided Z-value, with a 95% and 99.9% confidence interval
and a minimum cluster size of 64mm3. Since cluster-level inference was used for
the main contrasts, the cluster itself has an associated probability and subpeaks are
not meaningful (Woo et al., 2014). As such, all voxels that are part of a given cluster
are set to the cluster-level Z-value significance and therefore the entire cluster
is set to a single cluster-level significant value. The reported cluster coordinates
therefore correspond to the centre of mass (COM) and not to the peak Z-value of a

given cluster.
4.2.2.3 Anatomical labels

As the clusters can span across a number of distinct cortical and subcortical areas,
we chose to report the anatomical labels for which the cluster overlaps instead
of simplifying a cluster to a single COM coordinate. Another reason why we did
not solely focus on the COM is that the coordinate can be located outside of the
body of a cluster due to its irregular shape. The anatomical labels for the resulting
clusters were determined using a number of atlases (AAL2, Harvard-Oxford and
Julich; (Desikan et al., 2006; Eickhoff et al., 2006; Eickhoff et al., 2007; Eickhoff et al.,
2005; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006; Rolls et al., 2015)
where the overlap of the cluster with the main anatomical labels are provided.

4.2.3 Open science

A python notebook to query PubMed and Neurosynth is provided on the following
link. All syntax used to run the ALE analyses with the corresponding input and

output files are also provided in the following link.
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Figure 4.2: Overview of the ALE method. Peak coordinates from each included study are inputted
into NiMARE. The spatial uncertainty for each foci from each study is estimated using sample
size dependent gaussian kernels, where larger sample sizes have less spatial uncertainty and
therefore smaller kernels. The resulting modelled activation maps are combined to create an
uncorrected ALE union map. We end with the final thresholded ALE-map, which indicates
clusters at which the convergence of foci is above what would be expected at chance-level. The
diagram uses data from the main contrast of the inhibition subtype. FWHM: full width at half
maximum.

4.3 Results
4.3.1 Main contrast results

Because each significant cluster is generally not solely within one specific brain
area, we provide the main anatomical regions that overlap within each cluster.
The percentage overlap of each of these structures within the significant clusters
can be found in Supplementary Table 4.1 for each of the three atlases used (AAL2,
Harvard-Oxford and Julich).

4.3.1.1 Interference resolution

The NiMARE ALE analysis found 9 significant activation clusters within the main
contrast (Incongruent > Congruent) for the Flanker, Simon, Stroop and multi-
source interference tasks (see Figures 4.3 and 4.4). Significant clusters within
this contrast included the bilateral SMA, bilateral insula, left occipital inferior
lobule, left anterior intra-parietal sulcus, left IFG, left superior frontal gyrus and
left superior parietal lobule (see Table 4.2).

4.3.1.2 Global inhibition

The NiMARE ALE analysis found 14 significant activation clusters within the main
contrast (Stop | NoGo > Go) for the go/no-go and stop-signal tasks (see Figures
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Interference
Inhibition

Figure 4.3: A 3D representation of the activation clusters for the interference and inhibition
ALE analyses. A) Shows the clusters for both the interference (blue) and the inhibition (red)
contrasts. B) Shows the clusters for the interference contrast only and the input coordinates
from all interference tasks (green). C) Shows the clusters for the inhibition contrast only and the
input coordinates for all inhibition tasks (green). The three columns show the right, superior and
posterior view. R: right.

4.3 and 4.4). Significant clusters within this contrast includes the bilateral insula,
bilateral inferior parietal lobule, right precentral cortex, right inferior temporal
lobule, left fusiform gyrus, bilateral SMA, bilateral visual cortex and right mid
cingulate cortex (see Table 4.2).
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Cortical and subcortical contributions

Note that previous work (Wessel, 2018) has shown that the probability of a
salient event and the pace of the trials both influence what cognitive process is
actually elicited by a Go/No-Go task. In Supplementary Table C.2, two additional
control analyses are reported where the robustness of the inhibition contrast results
was tested. When excluding the two Go/No-Go studies with equal probability
of a salient event, 14 similar clusters as reported in Table 4.2 were found. When
additionally excluding the six Go/No-Go studies that had a maximum trial length
longer than 4 seconds, minor differences were found as only 12 similar clusters
were found. Whether maximum trial length was the determining factor or whether
this difference was due to a reduced number of contrasts contributing to the ALE

analysis remains unclear.

4.3.1.2.1 Go/No-Go > Stop-Signal task

An exploratory analysis was done to directly compare the Go/No-Go and Stop-
Signal tasks. It should be noted that the number of contributing studies is low
for each of the two tasks and should therefore be interpretated with caution. The
Go/No-Go minus Stop-Signal subtraction analysis displayed a single significant
cluster in the right precentral cortex and the main anatomical overlap is given in
Table 4.3.

4.3.1.2.2 Stop-Signal > Go/No-Go task

The Stop-Signal minus Go/No-Go subtraction analysis displayed 5 significant
clusters located respectively in the left inferior parietal cortex, right visual cortex,
right premotor cortex, left insula and finally the left fusiform cortex. The main

anatomical overlap within each cluster can be seen in Table 4.3.

4.3.2 Comparison between interference and inhibition types

High overlap of activation clusters is found between interference and global
inhibition, it should be noted that the latter appears to recruit many more regions
than the former during the main contrasts for these task types. Recruitment of the
bilateral SMA, bilateral Insula, and left IFG is shown for both inhibition types.

4.3.3 Subtraction analysis

Here, we present results firstly for the subtraction analysis of the interference-
specific activations minus the inhibition-specific activations, and then the reverse

of this, to indicate where these processes differ on a neural level.
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Figure 4.4: The activation clusters for the interference and inhibition ALE analysis in standard
MNI space. The blue clusters correspond to the interference contrast, whereas the red clusters
correspond to the inhibition contrast. The numbers indicate the Z coordinates in MNI space. R:
right.

Table 4.3: Significant activation clusters of the Go/No-Go and Stop-Signal subtraction ALE
analysis. SST: Stop-Signal task, COM: Center of Mass L: left, R: right. The x, y and z coordinates
are in MNI space. Note that the Center of Mass for irregular shapes may lay outside of the actual
cluster used to extract the anatomical labels.

Cluster Volume Cluster COM COM COM

Contrast Main anatomical overlap
ID (mm3) Z-value X Y z
SSOT/ NoGo-> 1376 345 26 416 50 R Premotor cortex (BA6)
SST
> 3976 3.50 -56 -36 32 L Inferior parietal lobule (PF)
Go/NoGo
2 3064 3.38 22 -74 -14 R Visual cortex (V3)
3 2920 3.50 4 24 36 R Premotor cortex (BA6)
4 1960 3.52 -40 12 -6 L Insula
5 1632 3.25 -26 -56 -2 L Fusiform cortex
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Table 4.4: Significant activation clusters of the interference and inhibition subtraction ALE analysis.
BA: Brodmann area. COM: Center of Mass; L: left, R: right. The x, y and z coordinates are in MNI
space. Note that the Center of Mass for irregular shapes may lay outside of the actual cluster
used to extract the anatomical labels.

Cluster Volume Cluster COMCOMCOM

Contrast Main anatomical overlap
ID (mm3) Z-value X Y V4

Interf
nerierence > 1976 354 36 -32 36 LlInferior parietal lobule (PFt)
Inhibition
2 680 345 0 -70 52 L Precuneus
3 590 3.37 -8 -50 38 L & R Precuneus, L mid cin-
gulate cortex
Inhibition > . .
21792 3.59 56 -52 18  RInferior parietal lobule (Pga,
Interference

PFm)

2 12496 3.73 -34 26 -14 L Frontal orbital cortex, L
frontal pole

3 9128 3.59 46 2 44 R Premotor cortex (BA6)

4 4160 3.50 22 48 22 RFrontal pole

5 3889 3.53 -58 -54 38 L inferior parietal lobule
(PFm, PF)

6 3504 3.63 26 20 -6 R Putamen, R orbital frontal
cortex, R insula, R caudate

7 744 3.28 -52  -80 12 L Lateral occipital cortex, L
visual cortex (V4, V5)

8 616 3.32 20 -98 18 L Occipital pole, L visual cor-
tex (V1, V2)

4.3.3.1 Interference > Inhibition

The interference minus inhibition subtraction analysis displayed 3 significant
clusters. The main anatomical overlap within each cluster can be seen in Table
4.4. The largest clusters appear to be in the left inferior parietal lobule, bilateral
precuneus, and left mid cingulate cortex (see Figure 4.5).

4.3.3.2 Inhibition > Interference

The inhibition minus interference subtraction analysis displayed 8 significant
clusters. The main anatomical overlap within each cluster can be seen in Table
4.4. The largest clusters here appear to be in the bilateral inferior parietal lobule,
bilateral frontal poles, right premotor cortex, right striatum, and the left early

visual cortex (see Figure 4.5).
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Interference > Inhibition
Inhibition > Interference

Figure 4.5: A 3D representation of the activation clusters for the subtraction analyses. A) Shows
the clusters corresponding to the interference>inhibition subtraction (blue) and the clusters
corresponding to the inhibition>interference subtraction (red). B) Shows the clusters for the
interference>inhibition subtraction only. C) Shows the clusters for the inhibition>interference
subtraction only. The three columns show the right, superior and posterior view. R: right.
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4.4 Discussion

4.4.1 Dissociation between interference resolution and global
inhibition networks

Using the meta-analytical method of ALE, we sought to shed light on our current
understanding of the functional overlap between interference resolution and
global inhibition in the cortex and subcortex. The meta-analysis provides an
updated view on cognitive control by including only papers published in the
last decade. For the interference tasks, the associated regions were the bilateral
SMA, bilateral insula, left intraparietal sulcus, left superior parietal lobule, left
superior frontal gyrus, left inferior occipital lobule, and the left precentral gyrus.
Brain areas activated in the inhibition tasks include the bilateral insula, right IFG,
bilateral precentral gyrus, right inferior temporal lobule, left fusiform gyrus, left
supramarginal gyrus, bilateral SMA, visual cortex and frontal pole. The main
anatomical overlap of the interference and inhibition tasks was found in the
bilateral SMA and bilateral insula. Our subtraction analysis indicates that the
bilateral precuneus and mid cingulate cortex were implicated as distinct brain
areas involved in interference resolution but not global inhibition. The subtraction
analysis also revealed a number of regions involved in global inhibition that were
not recruited during interference resolution, namely the bilateral inferior parietal
lobule, the right premotor cortex and bilateral frontal pole. The differences in
neural recruitment between the Go/No-Go and Stop-Signal task seem to follow the
results as presented by (Swick et al., 2011) but as stated, the number of contributing

studies was low and should not be overinterpreted.

Generally, interference resolution appears to recruit more left-lateralized and
global inhibition more right-lateralized regions. Note that this lateralization pat-
tern for interference and inhibition tasks has been reported before (Aron et al.,
2004; Vanderhasselt et al., 2009; Zhang et al., 2014), although that is not always
the case (Serrien and Sovijarvi-Spapé, 2013). Taken together, the results of the
meta-analysis are clear-cut in terms of supporting the need for separating these
subtypes of cognitive control. Although there is evidence for some overlap be-
tween the networks that subserve these mechanisms, the results here, combined
with previous work (Huang et al., 2020; Hung et al., 2018; Tobia et al., 2016), largely
suggests that these cognitive processes are rooted in a number of distinct cortical

brain areas.

Contrary to previous findings, our results do not show activation of the ACC in

either contrast. Although the ACC is commonly implicated in cognitive control
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(Hung et al., 2018; Mayer et al., 2012; Nee et al., 2007; Zhang et al., 2017) discrepan-
cies have been shown (Veroude et al., 2013) and lesion studies have indicated that
the region is not necessary for functional cognitive control (Di Pellegrino et al.,
2007; Fellows and Farah, 2005; Mansouri et al., 2009). This is in contention to
early models of ACC function which suggest that the ACC plays a pivotal role in
conflict monitoring and action selection (Botvinick et al., 2001; Holroyd and Coles,
2008).

4.4.2 Subcortical involvement in cognitive control

Imaging the subcortex is notoriously difficult using standard fMRI acquisition and
analysis protocols (De Hollander et al., 2015; Hollander et al., 2017; Keuken et al.,
2018; Mileti¢ et al., 2020; Mulder et al., 2019; Torrisi et al., 2018). To account for
these challenges, we only included studies that employed 3 Tesla or higher field
strengths with (near) isotropic voxel sizes of 3x3x3mm or smaller. Furthermore,
we only included studies that processed the fMRI data with FWHM smoothing
kernels that were smaller or equal to 8mm. Due to the whole brain acquisition
inclusion criteria, a number of studies had to be excluded that focussed on a
number of a-priori defined subcortical regions e.g., (Hollander et al., 2017; Mileti¢
et al., 2020). The stringent MRI parameter inclusion criteria did not, however,
result in a large number of studies that used ultra-high field MRI as 55 out of the
57 included studies employed 3T MRI, which might not be ideal for imaging the
subcortex (Forstmann et al., 2016; Hollander et al., 2017; Isaacs et al., 2020).

Regardless of the field strength of the 73 contrasts used in the final analysis, 27
(15 within global inhibition, 12 within interference resolution) of them reported a
peak coordinate within the subcortex. The average voxel volume of all included
studies analysed here was 24.6mm, which would give approximately 3-4 voxels in
the STN (82.5 + 22.5mm), 19-20 voxels in the SN (469.9 + 88.8mm) and 34-35 in the
Globus Pallidus externa (GPe; 860.3 + 137.7mm; (Alkemade et al., 2020a), whereas
optimized UHF fMRI sequence for the subcortex can achieve voxel volumes of
3.38mm with relative ease (Hollander et al., 2017; Mileti¢ et al., 2020).

As is clear from the results, there appears to be an absence of consistent subcor-
tical activation patterns in both the global inhibition and interference tasks. This
was surprising given the intracranial recording work and recent coordinate-based
fMRI meta-analyses for response inhibition (Hung et al., 2018; Zhang et al., 2017).
The only evidence found for the involvement of the subcortex was the putamen
(inhibition contrast, cluster 1), but no clear evidence for the thalamus or other

basal nuclei, in contrast to previous single studies (Aron, 2007; Duann et al., 2009;
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Wimmer et al., 2015; Zandbelt and Vink, 2010) and meta-analyses (Cieslik et al.,
2015; Guo et al., 2018; Hung et al., 2018). The putamen has been implicated as a
vital element for motor control in the process of global inhibition (Alexander et al.,
1986; Zandbelt and Vink, 2010). As such it remains unclear from this meta-analysis
which aspects of cognitive control are implemented in the subcortex and how
these processes are shared between interference resolution and global inhibition.

It appears that as methodology has progressed in the last decade, little improve-
ment was made toward increasing sensitivity in subcortical areas. This has made
sufficient aggregation of subcortical data by standard whole brain meta-analytical
methods problematic. As whole-brain acquisition usually entails sacrificing spatial
resolution, whole-brain coordinate based meta-analyses may not be optimal for
aggregating functional data for small subcortical regions. It should also be noted
that cluster-based thresholding inherently biases against small clusters, such as
those normally found in the subcortex (Woo et al., 2014). This suggests that ROI-
and image-based methods may be superior for inferring subcortical contributions
to cognitive mechanisms as investigated here (Colizoli et al., 2020; De Hollander
etal., 2015).

As a consequence, when conducting meta-analyses focusing on the human
subcortex one may use less conservative criteria (e.g., lower resolution, lower
field strengths), leading to more partial voluming and low numbers of voxels in
smaller structures or use stricter criteria, which results in lower sensitivity and a
lower number of studies. Such a choice can be overcome by moving away from
coordinate based meta-analyses and instead using analyses directed by predefined

regions of interest.
4.4.3 Limitations of the current study

A general limitation is the anatomical specificity of the results. In a coordinate-
based meta-analysis such as in the current study we only incorporate the re-
ported peak coordinates of what is likely a much larger cluster of activation.
This limitation can be addressed by conducting an image-based meta-analysis
using either the raw data or statistical maps of the included studies. This would,
however, require that the data is publicly shared on a data repository such as
Neurovault (https:/ /neurovault.org; (Gorgolewski et al., 2015)) or OpenNeuro
(https:/ /openneuro.org; (Poldrack et al., 2013)) which can be accompanied by a
data descriptor paper (“More Bang for Your Byte,” 2014; (Shaklee, 2014)). None of
the data analysed here was openly available online on such websites, though most
authors do make their data available upon direct request. A specific limitation
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of the current meta-analysis are the specific tasks that were included. Based on a
number of previous meta-analysis we chose to only include the Go/No-Go and
Stop-Signal task for global inhibition. Future work should extend this selection
of paradigms to also include tasks such as the anticipated response inhibition
task (Slater-Hammel, 1960) and countermanding saccade task (Hanes et al., 1998).
Other potential tasks of interest might be the random dot motion paradigm which
has been used in the past to investigate stimulus and response conflict processing
(e.g., (Wendelken et al., 2009). Note that ideally the number of experiments across
the different paradigms which contributed to the contrast is balanced (Miiller et al.,
2018). Finally, due to the selection of specific tasks, the interference contrast is
mostly based on equal probable salient events whereas this is approximately 1:3 for
the inhibition contrast. This difference in saliency might explain the involvement
of the parietal areas (and potentially the right IFG) in the interference contrast as
these have been linked to attentive processing (e.g., (Boehler et al., 2011)).

4.5 Conclusion

We set out to investigate the contribution of recent, high-resolution fMRI in the
study of cognitive control through an extensive meta-analysis. This has revealed a
gap in the neuroscientific literature pertaining to high resolution neuroimaging of
interference and inhibition tasks. In particular, subcortical findings did not result
in clusters that survived statistical threshold. The results presented here show large
overlaps but also some discrepancies with previous work investigating the brain
regions underpinning interference resolution and global inhibition. Cortically, the
involvement of the insula and SMA in both mechanisms is not surprising, though
the lack of significant activation in the ACC indicates that our understanding
of the inhibitory and attentional networks is not yet complete. Future studies
focusing on imaging the subcortex are required to shed light on the networks
involved in cognitive control at a whole-brain level.
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Investigating intra-individual networks of response inhibition
and interference resolution using 7T MRI

This chapter is published as:

S.].S. Isherwood, P--L. Bazin, S. Mileti¢, N. R. Stevenson, A. C. Trutti, D. H. Y. Tse,
A. Heathcote, D. Matzke, R. J. Innes, S. Habli, D. R. Sokolowski, A. Alkemade, A. K.
Héberg, and B. U. Forstmann (2023a). Investigating Intra-Individual Networks
of Response Inhibition and Interference Resolution using 7T MRI. Neurolmage,
p- 119988.
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Abstract

Response inhibition and interference resolution are often considered subcom-
ponents of an overarching inhibition system that utilizes the so-called cortico-
basal-ganglia loop. Up until now, most previous functional magnetic resonance
imaging (fMRI) literature has compared the two using between-subject designs,
pooling data in the form of a meta-analysis or comparing different groups. Here,
we investigate the overlap of activation patterns underlying response inhibition
and interference resolution on a within-subject level, using ultra-high field MRI.
In this model-based study, we furthered the functional analysis with cognitive
modelling techniques to provide a more in-depth understanding of behaviour.
We applied the stop-signal task and multi-source interference task to measure
response inhibition and interference resolution, respectively. Our results lead us
to conclude that these constructs are rooted in anatomically distinct brain areas
and provide little evidence for spatial overlap. Across the two tasks, common
BOLD responses were observed in the inferior frontal gyrus and anterior insula.
Interference resolution relied more heavily on subcortical components, specifically
nodes of the commonly referred to indirect and hyperdirect pathways, as well
as the anterior cingulate cortex, and pre-supplementary motor area. Our data
indicated that orbitofrontal cortex activation is specific to response inhibition. Our
model-based approach provided evidence for the dissimilarity in behavioural
dynamics between the two tasks. The current work exemplifies the importance
of reducing inter-individual variance when comparing network patterns and the
value of UHF-MRI for high resolution functional mapping.
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5.1 Introduction

Response inhibition is defined as the global inhibition of a planned or already initi-
ated response, commonly investigated using the stop-signal task (SST; Aron (2011)
and Logan and Cowan (1984)). Interference resolution is a selective inhibition
process that functions to suppress prepotent but suboptimal behaviour and is re-
quired for tasks such as the multi-source interference task (MSIT; Bush et al. (2003).
Although both constructs are placed under the umbrella of inhibition-related func-
tioning, concrete knowledge on their overlap in neural implementation is lacking
(Isherwood et al., 2021b; Nee et al., 2007; Schmidt et al., 2020; Swick et al., 2011).
Both the SST and MSIT have yielded robust results in functional magnetic reso-
nance imaging (fMRI) studies and lend themselves well to cognitive modelling,
although the neural architectures underlying behaviour in the tasks have not been
directly compared (Bush and Shin, 2006; Deng et al., 2018; Hollander et al., 2017;
Mileti¢ et al., 2020).

Accumulating evidence indicates response inhibition is executed via a complex
cortico-basal-ganglia network which is also involved in action planning and initi-
ation (Albin et al., 1989; DeLong, 1990; Jahanshahi et al., 2015; Wessel and Aron,
2017), though some work has revealed inconsistencies in this theory (Hollander
et al., 2017; Mileti¢ et al., 2020). Through these intricate subcortical-cortical con-
nections the idea is that the direct pathway plays a pivotal role in the initiation of
movement (see Fig. 5.1). It is generally accepted that two separate pathways, the
indirect and hyperdirect, work in tandem to pause or inhibit planned or already
initiated movement (Diesburg and Wessel, 2021; Schmidt and Berke, 2017). While
the role of this network in response inhibition has been widely investigated, its
role in interference resolution remains elusive. With the idea that interference
resolution is a type of selective inhibition, and response inhibition a more global
method of inhibition, we sought to investigate to what extent they share common

neural substrates within and outside of these canonical inhibitory pathways.

Previous meta-analyses and original studies indicate that the two types of in-
hibitory control utilize several distinct brain areas, namely the pre-supplementary
motor area (preSMA) and subthalamic nucleus (STN) in response inhibition and
the anterior cingulate cortex (ACC), superior parietal lobule (SPL) and striatum in
interference resolution (Cieslik et al., 2015; Hung et al., 2018). However, overlap-
ping activation has been found in the anterior insula (al), preSMA, and inferior
frontal gyrus (Cieslik et al., 2015; Hung et al., 2018; Isherwood et al., 2021b). These

studies also suggest that response inhibition recruits a more right-lateralized, and
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Figure 5.1: The direct, indirect and hyperdirect pathways in humans (adapted from Diesburg
and Wessel (2021)). Glutamatergic connections are represented as green lines, GABAergic
connections as red and a reduction in signaling as dotted. IFG, inferior frontal gyrus; preSMA,
pre-supplementary motor area; GPe, globus pallidus externa; GPi, globus pallidus interna; SNr,
substantia nigra pars reticulata; STN, subthalamic nucleus.

interference resolution a more left-lateralized network. Combined, these studies
found little evidence of common subcortical involvement across the tasks. It is
important to note that almost all meta-analyses are based mostly on 1.5T or 3T
data and may lack the signal quality (in terms of signal-to-noise ratios) necessary
to uncover activation in deeper parts of the brain. As such, there is an abundance
of studies investigating both response inhibition and interference resolution in
isolation, but few that have focused on intra-individual overlaps (Sebastian et al.,
2013), especially at higher field strengths.

In addition to a lack of within-subject studies, model-based imaging approaches
are missing (Maanen et al., 2015; Sebastian et al., 2018). Such an approach allows
us to further understand the algorithmic level underlying behaviour as well
as the implementation level in the brain (Marr, 1982), giving us the tools to
gain mechanistic understanding. For example, if a parameter of a cognitive
model correlates with brain activity in a specific region, there is an indication
that the region could be involved in the specific process that parameter defines.
To gain a deeper understanding of the neural signatures of response inhibition
and interference resolution, here we apply both a well-established and a novel
method of cognitive modelling to the two tasks (Matzke et al., 2017; Matzke
et al., 2013). The stop-signal reaction time (SSRT) is the canonical marker of
behavioural stopping ability during the SST and can be estimated using several
methods (Logan and Cowan, 1984; Matzke et al., 2018). This marker has been
shown to correlate negatively with nodes of the indirect pathway including the
rIFG, caudate nucleus, and STN activity (Aron and Poldrack, 2006; Li et al., 2006;
Whelan et al., 2012). To the best of our knowledge, there are no model-based fMRI
studies of the MSIT. Here, we apply an evidence accumulation model, the racing

Wald, to identify whether we can capture behaviour during interference resolution
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in terms of changes in drift rate, threshold or non-decision time (Logan et al., 2014;
Stevenson et al., 2023).

To accurately compare these two tasks, we employed ultra-high field magnetic
resonance imaging (UHF-MRI) to acquire within-subject fMRI data of the SST and
MSIT. UHF-MRI allowed us to obtain high resolution and optimized contrasts
in deep subcortical areas as well as maintaining sufficient signal in the cortex
(Isherwood et al., 2021a; Mileti¢ et al., 2020). The echo time is important for
optimal BOLD-sensitivity and should be equal to the T2* of the tissue of interest,
for the STN and GPe this is around 14 ms (Posse et al., 1999). We therefore ‘tailored”
the sequence to the subcortex, by choosing a TE more optimal for it (Mileti¢ et al.,
2020). This, of course, results in a suboptimal TE for imaging cortical regions
(which is around 30 ms). Due to the increased signal you achieve in the cortex,
simply from being closer to the MRI head coils, we chose to focus on increasing
sensitivity to subcortical BOLD responses which are widely underrepresented in
functional studies.

We fit both whole-brain and region of interest (ROI) based general linear models
(GLMs) for each participant of the study and compared their activation patterns.
As the precise delineation of smaller subcortical structures is crucial for accurate
statistical analysis, we here used the multi-contrast anatomical subcortical struc-
tures parcellation (MASSP) algorithm to directly obtain individual masks for each
participant (Bazin et al., 2020). To better understand the mechanisms underlying
observed behaviour in each task, we utilized separate cognitive modelling tech-
niques. Based on previous literature, we expected to replicate findings of cortical
overlap of response inhibition and interference resolution in the al, preSMA, and
IFG. Additionally, by using the high-resolution subcortical masks derived we
aimed to explore possible commonalities in basal ganglia structures that constitute
canonical inhibitory pathways.

5.2 Materials and Methods

5.2.1 Participants

A total of 37 participants (20 female; mean age 26.3 + 5.6; age range 19 — 39 years)
completed the study, which was approved by the ethical committee at the Univer-
sity of Amsterdam, the Netherlands, and the Regional Committees for Medical
and Health Research Ethics, Norway. Written informed consent and MRI screening

forms were obtained from all participants. The participants were recruited from
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the Norwegian University of Science and Technology and had corrected-to-normal
vision and no history of epilepsy or overt clinical neuropsychiatric disease.

5.2.2 Scanning Protocols

Each participant was scanned in a total of four MR sessions as part of a larger
project on a Siemens MAGNETOM TERRA (Tesla (T) = 7; gradient strength = 80
mT/m at 200 T/m/s) with a 32-channel head coil. Here, we only describe the
sessions that acquired the high resolution anatomical images and the SST and
MSIT experimental data. The anatomical session acquired a multi-echo gradient
recalled echo scan (GRE; TR = 31.0 ms, TE1 = 2.51 ms, TE2 =7.22 ms, TE3 = 14.44
ms, TE4 = 23.23 ms, FA= 12°, FOV = 240 x 240 x 168 mm) and an MP2RAGE scan
(TR = 4300 ms; TE = 1.99 ms; inversions TI1 = 840 ms, TI12 = 3270 ms; flip angle 1 =
5°, flip angle 2 = 6° Field of View (FOV) = 240 x 240 x 168 mm; bandwidth (BW)
=250 Hz/Px; Marques et al. (2010)). The experimental session consisted of four
functional echo-planar imaging runs with subsequent acquisition of 4 EPI volumes
with opposite phase encoding direction for susceptibility distortion purposes. The
functional data was collected using a single echo 2D-EPI BOLD sequence (TR =
1380 ms; TE = 14 ms; MB = 2; GRAPPA = 3; voxel size = 1.5 mm isotropic; partial
Fourier = 6/8; flip angle = 60°; MS mode = interleaved; FOV = 192 x 192 x 128 mm;
matrix size = 128 x 128; BW = 1446 Hz/Px; slices = 82; phase encoding direction =
A » P; echo spacing = 0.8 ms). Each task had a total of 2 runs, each with a 13:27
min acquisition time, for a total of 4 runs and 53:48 min functional scanning.

5.2.3 Physiological data

Physiological data (heart and breathing rate) were recorded for all participants
in order to estimate the effects of physiological noise on the fMRI data. An
18 regressor RETROICOR model was fit (Glover et al., 2000). This included a
fourth order phase Fourier expansion of the heart rate s