
SCOTT J.S. ISHERWOOD

INHIBITION-RELATED FUNCTIONS
IN THE HUMAN SUBCORTEX

IN
H

IBIT
IO

N
-R

ELA
T

ED
 FU

N
C

T
IO

N
S IN

 T
H

E H
U

M
A

N
 SU

BC
O

R
T

EX
SCO

TT J.S. ISH
ERW

O
O

D





Inhibition-related functions
in the human subcortex

Scott J.S. Isherwood



ISBN 978-94-6473-268-9
Copyright ©2023 Scott J.S. Isherwood. All rights reserved.



Inhibition-related functions in the
human subcortex

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op maandag 16 Oktober 2023, te 14.00 uur

door Scott Jie Shen Isherwood

geboren te Chertsey

i



Promotiecommissie

Promotor: prof. dr. B. U. Forstmann Universiteit van Amsterdam

Copromotor: dr. P. L. E. A. Bazin Universiteit van Amsterdam

Overige leden: prof. dr. A. J. Heathcote Universiteit van Amsterdam
dr. D. Matzke Universiteit van Amsterdam
dr. W. P. M. van den Wildenburg Universiteit van Amsterdam

dr. A. Sebastian
University Medical Center of
the Johannes Gutenberg-
University Mainz

dr. H. S. Scholte Universiteit van Amsterdam

Faculteit der Maatschappij- en Gedragswetenschappen

ii



The research for this doctoral thesis received financial assistance from the
Netherlands Organisation for Scientific Research (NWO) under project number
016.Vici.185.052.

iii



"Any action born of noise produces more noise, more confusion"
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Chapter 1

Introduction

The field of cognitive neuroscience has come a long way since the advent of mag-
netic resonance imaging (MRI) in the 70s. Since this pinnacle point, there has been
a boom of structural and functional findings of the human brain across the field.
The brain has long been split into three distinct parts: the cerebral cortex, the sub-
cortex, and the cerebellum. The subcortex, which simply translates to ‘beneath the
cortex’, accounts for around 25% of the entire brain. Since Korbinian Brodmann’s
renowned cytoarchitectural breakdown of the cerebral cortex at the start of the
20th century, our maps of the brain have been in constant evolution. In 1998 the
Federative Committee on Anatomical Terminology produced the Terminologia
Anatomica, the holy bible of anatomy, describing the 455 structures within each
hemisphere of the human subcortex (Federative Committee on Anatomical Termi-
nology, 1998). Of these 455 structures, only around 7-8% of them are represented in
MRI atlases. The cortex on the other hand has received the lion’s share of attention
throughout the history of cognitive neuroscience. This outer region of the brain
has been mapped vigorously and continuously, and most recently defined to be
made up of approximately 180 different regions (Glasser et al., 2016). So-called
‘corticocentric’ views have long dominated the field. The subcortex is therefore
rightly considered as terra incognita (Alkemade et al., 2013). The question is: why
has there been such an underrepresentation of a large portion of the brain?

Over the course of my research, it has become apparent that there are two likely
reasons for this underrepresentation. The first, is that it was long believed that the
subcortex is just not that important. As our understanding of the human brain
grew, it became more and more evident that it is the cerebral cortex that separates
us from the rest of the animal kingdom. This caused our search for the anatomy
and functions of the cortex to overshadow the deep brain. On the surface this
makes sense, other species of mammal have a cortex that seems inferior to ours,
while the subcortex appears to be relatively consistent in size and shape. This view
resulted in the idea that the subcortex does not drive any aspects of higher-level
cognition, and that our enormous cerebral cortex is what truly underpins our
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Chapter 1

distinctly human aspects of behaviour and cognition (Bystron et al., 2008). But,
is this so? Is the subcortex merely a sluggish artifact of our primitive ancestry,
passed down as a tag along to our superior and uniquely human cerebral cortex?
Interestingly, when digging deeper researchers found that subcortical differences
in gene regulation between humans and other primates actually outweighs that
of the cortex (McCoy et al., 2017; Vermunt et al., 2016). There is also now an
abundance of evidence supporting the role of the subcortex in many aspects of
human cognition and that proper functioning of subcortical nuclei is required for
an array of adaptive and core day-to-day human behaviours such as learning,
action selection and memory (Aron and Poldrack, 2006; Fortin et al., 2002; Frank,
2006; Glimcher, 2004; Obeso et al., 2008; Sutton, Barto, et al., 1998). The subcortex
is not only highly interconnected within itself, including the brainstem, but also
with the cortex and cerebellum, with both extensive reciprocal and non-reciprocal
circuits (Alexander et al., 1986; Middleton and Strick, 1994). These more recent
findings mean the subcortex is only just beginning to be appreciated in the human
neurosciences.

The second reason for this underrepresentation is a practical one: the subcortex
is hard to get to. Both invasive and non-invasive techniques of studying neu-
roanatomy are inherently easier when studying the outer regions of the brain.
Subcortical structures are located deep within the brain, and their small size, bio-
physical properties and close spatial proximity to other nuclei make it challenging
to obtain high-resolution images (Miletić et al., 2022). For methods such as MRI
and electroencephalography (EEG), the distance of the middle of the brain from
the measuring equipment outside of the skull makes acquiring a reasonable signal
difficult. Only recently has precise observation of the subcortex in vivo become
possible with these methods. Recent advances in neuroimaging and neurophysio-
logical techniques are beginning to shed light on the importance of the subcortex,
and it is likely that future research will increasingly focus on this often-overlooked
part of the brain.

More holistic approaches to brain mapping are difficult, advanced method-
ologies and equipment are needed to visualize the subcortex and cerebellum.
Even here, this thesis focuses on imaging the subcortex, and unfortunately mostly
disregards the cerebellum due to these difficulties. On the bright side, imaging
methods that can observe the subcortex are usually also able to image the cortex
with the same rigor. Throughout this thesis I bring together techniques that pro-
vide knowledge closer to the level of the whole brain. While I will emphasize
the role of the subcortex, it is important to state that the value of the cortex and
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Introduction

Figure 1.1: MASSP structures (adapted from Bazin et al., 2020). The 17 subcortical structures
currently included in the parcellation algorithm in axial (A), sagittal (B), and coronal (C) views.

cerebellum in human cognition and behaviour is by no means underestimated.
Recent breakthroughs in neuroimaging and image processing have allowed the
development of superior atlases of the subcortex. The multi-contrast anatomical
subcortical structures parcellation (MASSP) atlas is one of the most updated maps
of the deep brain, supporting the ability to automatically parcellate grey matter
nuclei in the subcortex at an unprecedented scale and accuracy (see Fig 1.1; Bazin
et al., 2020). Now that it is possible to visualize these structures from in vivo scans,
we can more precisely analyze their roles in human behaviour.

The present introduction follows the themes of the chapters in this thesis. Now
that I have described the importance and underrepresentation of the subcortex,
we will move on to its structure and its roles in health and disease. I will mostly
discuss a subset of regions within the subcortex called the basal ganglia, a bundle
of structures involved in a wide range of motor, cognitive and limbic functions.
As given away by the title of this book, I will then focus more specifically on the
role of the subcortex in inhibition-related functions, namely response inhibition
and interference resolution.

The subcortex in health and disease

The subcortex is comprised of hundreds of structures, though the regions making
up the basal ganglia have received the most attention over the years. This group
of nuclei are involved in a wide range of functions, including response inhibition,
interference resolution and motor movement (see Fig 1.2). The nuclei making
up the basal ganglia include the dorsal striatum (caudate nucleus and putamen),
ventral striatum (nucleus accumbens and olfactory tubercle), subthalamic nucleus
(STN), substantia nigra (SN) and the globus pallidus (GP). One way in which the
basal ganglia interact with the cortex is through a series of direct, indirect, and
hyperdirect pathways. These pathways are essential for regulating the flow of
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Chapter 1

information between the cortex and the basal ganglia and for coordinating the
execution of movements. The direct pathway, which is mediated by neurons in the
striatum that express dopamine D1 receptors, facilitates movement by funneling
information from the cortex to the globus pallidus interna (GPi) and substantia
nigra pars reticulata (SNr), reducing their activity which in turn, disinhibits the
thalamus. This pathway promotes the initiation and execution of movement by
exciting motor cortex regions that are responsible for motor output. The indirect
pathway, which is mediated by neurons in the striatum that express dopamine
D2 receptors, is thought to inhibit movement by disinhibiting the globus pallidus
externa (GPe), which in turn inhibits the thalamus. The indirect pathway serves
as a brake on movement, preventing unwanted or inappropriate actions. The
hyperdirect pathway, which connects the cerebral cortex directly to the STN, is
suggested to provide rapid and direct inhibition of movement by bypassing the
indirect pathway and triggering GPi/SNr activation. Overall, these pathways
work together to maintain a normal state of voluntary movement.

One of the first recorded associations between the basal ganglia and an abnor-
mal state of voluntary movement came in 1912 (Wilson, 1912). The specific type of
abnormal movement described, dyskinesias, was attributed to lesions in the basal
ganglia. The neurologist who made this connection, Samuel Alexander Kinnier
Wilson, aptly named the disease that caused this Wilson’s disease. Since then, the
abnormal movements associated with Wilson’s disease have been more closely
tied to the putamen and GP (Lorincz, 2010; Yousaf et al., 2009). Additionally, many
studies have shown that dysfunction in the cortico-basal-ganglia pathways can
lead to motor and cognitive deficits, including impairments in response inhibi-
tion (Caballol et al., 2007; Chang and Guenther, 2020; Chudasama and Robbins,
2006; Salmon and Filoteo, 2007). For example, degeneration of or damage to
the basal ganglia can result in hyperactivity in the indirect pathway. This is one
of the main mechanisms thought to underly some of the observable symptoms
of Parkinson’s disease (PD). PD is a progressive and chronic neurodegenerative
disease, characterized by the degeneration of dopamine-producing neurons in the
SN. This degeneration can lead to disruptions in the balance between the direct
and indirect pathways, resulting in motor impairments such as rigidity, tremors,
and bradykinesia (Burke and O’Malley, 2013; Tinaz et al., 2011). One observable
side effect of PD is an impairment in response inhibition (Gauggel et al., 2004; Ye
et al., 2015). The STN has long been implicated as an important node underlying
successful response inhibition. One effective symptomatic therapy for PD has
leveraged this by targeting the STN using deep brain stimulation (DBS). DBS
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Introduction

Figure 1.2: The cortico-basal-ganglia model (adapted from Song et al., 2023). a) Anatomical
depiction of the connections between the cortex and subcortex. The loop connects parts of the
cortex, such as the somatosensory and motor cortex, to nodes within the basal ganglia, such as the
STN and SN, and the thalamus. b) Diagram indicating the connections between different nodes of
the direct, indirect, and hyperdirect pathways. CTX, cortex; GPi/e, globus pallidus interna/externa;
MC, motor cortex; SC, somatosensory cortex; SN, substantia nigra; SNc, SN pars compacta; SNr,
SN pars reticulata; STN, subthalamic nucleus; STR, striatum; THL, thalamus.
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Chapter 1

has also shown promise in another basal ganglia disease: obsessive compulsive
disorder (OCD). OCD is a chronic psychiatric disease in which a person presents
with uncontrollable thoughts or behaviours that they feel the urge to repeat over
and over again. The manifestations of PD and OCD are very different, but their
symptoms can both be improved by similar treatments: DBS of the STN. The
chapters of this thesis will cover the topic of STN function in further detail, for
now it is only important to note that its exact functions have been difficult to pin
down, but it is evidently involved in a multitude of motor, cognitive and limbic
functions.

Many other neurological and psychiatric disorders have been associated
with both abnormalities in the basal ganglia and in inhibition-related functions.
Schizophrenia, a psychiatric disorder, has been linked to volume differences in
the thalamus, GP and the striatum, which may contribute to symptoms such as
delusions, hallucinations, and cognitive deficits (Kapur, 2003; Okada et al., 2016;
Van Erp et al., 2016). Attention deficit hyperactivity disorder (ADHD), in which
persons present with difficulties in controlling attention and impulses, has also
been associated with volumetric differences in regions of the basal ganglia (Qiu
et al., 2009). Both of these disorders are affected with underlying deficiencies in
inhibition-related functions (Matzke et al., 2017; Nigg, 2001). Finally, dystonia,
a movement disorder, is characterized by sustained and intermittent muscle
contractions that can cause muscle spasms, abnormal or painful contractions
and tremors (Albanese et al., 2013). These motor abnormalities are thought
to be a result of the overactivation of the direct pathway, though the exact
pathophysiology is unknown. As someone with dystonia, the roles of the nuclei
within these pathways have been of particular interest to me. What has become
clear, is that there is a delicate homeostasis of excitation and inhibition within the
basal ganglia that is tightly controlled (Hallett, 1998; Hallett, 2006). Understanding
the role of specific subcortical nuclei is therefore imperative to develop effective
treatments against these diseases. To be able to understand their roles, I employed
specific tasks aimed at stimulating different aspects of inhibition. In the section
below I will describe these inhibition-related processes in more depth and how
we examine them experimentally.

Inhibition-related functions

Inhibition-related functions can be deconstructed into three main categories (Nigg,
2000): (1) prepotent response inhibition, (2) resistance to distractor interference,
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Introduction

and (3) resistance to proactive interference. While on the surface these constructs
display a conceptual overlap, structural equation modelling later suggested that
the latter was not suited to this umbrella of inhibition-related functions (Friedman
and Miyake, 2004). I therefore limit the scope of this work to the two formers. It
should be noted that the nomenclature of these constructs is inconsistent across
the field of psychology. Prepotent response inhibition also goes by the terms motor
inhibition, global inhibition, or behavioural inhibition. Here we will refer to it
as response inhibition. Resistance to distractor interference also has a long list of
synonyms, including conflict resolution, selective inhibition, cognitive inhibition,
and interference resolution. Here we will use the latter. Response inhibition refers
to the ability to inhibit prepotent or automatic responses in favour of a more appro-
priate one. Interference resolution is the ability to suppress distracting information
that is irrelevant to the task at hand. These processes have been associated with
multiple behavioural traits in humans such as impulsivity (Jauregi et al., 2018),
sensation seeking (Andrew et al., 2015), and agreeableness (Jensen-Campbell et al.,
2002). While inhibition-related functions are only a small subset of functions that
the brain carries out, I believe that understanding how they are implemented is
of huge importance to developing treatments for related disorders. Deficiencies
in one or both of these processes is postulated to underly many manifestations of
Parkinson’s disease, obsessive compulsive disorder, schizophrenia, and dystonia.

There are a wide range of psychiatric and neurological subcortical diseases that
exhibit altered capacities in inhibition-related functions. On the implementation
level, the cortico-basal-ganglia loop is thought to be crucial for the proper func-
tioning of these processes. Inhibition was for a long time looked at as a unitary
construct, but their taxonomy as related but separable mechanisms was later for-
malized (Friedman and Miyake, 2004; Nigg, 2000). These mechanisms, response
inhibition and interference resolution, as well as other aspects of cognitive control,
enable individuals to engage in adaptive behavior in everyday life. As previously
mentioned, response inhibition refers to the ability to inhibit ongoing actions.
Imagine you are reaching for a hot pan, when an internal realization or external
cue triggers the stopping process, allowing you to inhibit this already initiated
action. Such a mechanism is commonly assessed using the stop signal task (SST).
The SST is a two-alternative choice reaction time task, where inhibition is assessed
by the ability to forego an ongoing action (Logan and Cowan, 1984; Verbruggen
et al., 2019). There are two trials types in the SST, go trials, where individuals are
instructed to respond to a go stimulus as quickly as possible, and stop trials, where
individuals are instructed to withhold their response if they see a stop stimulus
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Chapter 1

Figure 1.3: The stop signal task and the associated horse-race model (adapted from Sebastian
et al., 2018). a) The experimental design of the stop signal task. On a go trial, participants only
see a go stimulus and are required to respond. On a stop trial, a stop stimulus is presented
after the go stimulus and participants are required to withhold their response. b) The complete
horse-race model treats go RT and stop-signal reaction time (SSRT) as independent random
variables representing the finishing times of the go and stop processes, respectively.

(see Fig 1.3). The stop stimulus is only ever shown after the go stimulus. Go trials
dominate the task, usually at a 3:1 ratio. This primes individuals to expect go trials,
and find stop trials more salient, an important aspect of the task. One method of
formalizing behaviour during decision making tasks such as the SST, is cognitive
modelling (see Fig 1.3). Behaviour during this task specifically can be conceptual-
ized as a race between two competing but independent processes: a go process that
is triggered upon presentation of the go stimulus, and a stop process that is trig-
gered by the presentation of a subsequent stop stimulus. If the go process finishes
first, the response is implemented; if the stop process finishes first, the response
is inhibited (Logan and Cowan, 1984). This is called the horse-race model. Due
to the nature of the task, generally only around 12.5% of all trials are successful
stop trials. This is not a large issue for behavioural studies as you can simply
increase the number of trials with minimal consequence, but for imaging studies
this can cause considerable problems. Importantly, inhibition success is tracked
and modified by adapting the time between presentation of the go stimulus and
stop stimulus, known as the stop signal delay (SSD). This ‘staircase’ procedure
keeps participants inhibition success at around 50%. The race model allows us
to estimate the stop signal reaction time (SSRT), a measure of the latency of the
unobservable stopping response. Most methods of SSRT estimation produce only
a summary measure, and do not integrate the spread of the RT distribution. I
believe that methods that use the reaction time data from the SST more thoroughly
and produce a distribution of SSRTs provide greater insight into behaviour in this
task (Matzke et al., 2017; Matzke et al., 2013).
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Our second inhibition subtype, interference resolution, describes the ability to
suppress irrelevant or distracting information. Such an ability is important in
daily life, as it allows us to focus on task-related sources of information and filter
out unimportant internal or external stimuli. For example, it has been shown that
bilingual individuals possess better conflict monitoring abilities than those with
only a single language, most likely due to the practice in inhibiting competing
words in different languages (Abutalebi et al., 2012; Hernández et al., 2010).
Several tasks are commonly used to assess interference resolution including the
Simon, Flanker and multi-source interference tasks (MSIT; Bush et al., 2003; Eriksen
and Eriksen, 1974; Simon, 1969). In this thesis, I focus on the latter, the MSIT, which
combines aspects of both the Simon and the Flanker effect. The MSIT involves
identification of the number that is the odd one out in series of three numbers,
where the other two numbers are the same (see Fig 1.4). The paradigm is therefore
a three-alternative choice task, where participants are required to respond with
the identity of the unique number. As these numbers are mixed, a Simon effect
arises, whereby the position of the number in the sequence interferes with the
processing of its identity. Moreover, due to the two non-unique numbers acting as
distractors, a Flanker effect arises. The Flanker effect causes interference due to the
distractor numbers biasing the responder towards the wrong numerical response.
These effects gives rise to a mechanism of selective inhibition, forcing participants
to inhibit a response biased by one, or both of these interference effects. There
have been no previous efforts to model the behaviour in the MSIT. Here I apply a
model-based cognitive neuroscience approach to these subtypes of inhibition by
applying a novel method of cognitive modelling to the MSIT. I combine ultra-high
field MRI (UHF MRI) with these advanced modelling techniques to shed light on
the mechanisms underlying inhibition-related functions. The main advantage of
model-based methods is the ability to ascribe specific processes to specific regions
of the brain. The two tasks described above have been used extensively in both
healthy individuals and clinical populations to study the neural and cognitive
mechanisms underlying these types of inhibition. These subtypes of inhibition
have been studied relatively independently, here I attempt to formalize their
similarities and differences.

Imaging the subcortex

It should be clear now that the subcortex is important for normal functioning of
inhibition behaviours, as well as daily life in general. One main method I use
to further our knowledge of the subcortex, both structurally and functionally, is
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Figure 1.4: Examples of stimuli in the MSIT. In both examples, ’100’ and ’221’, the correct response
is ’1’. a) One of three possible stimuli in the congruent condition showing that there are no
interference effects. b) One of 12 possible stimuli in the incongruent condition showing how the
Flanker and Simon effects arise.

MRI. A key advantage of MRI is that it allows us to image in the human brain
in vivo. There are three different levels of scale at which one can attempt to map
the anatomy of the different regions of the brain: the macroscopic, mesoscopic
and the microscopic scales (Forstmann et al., 2017). MRI scanning can span
both the macroscopic (on the scale of centimeters) and mesoscopic (on the scale of
millimeters) levels, though cannot yet in most cases with appropriate signal, image
at the microscopic level (on the scale of micrometers). With UHF MRI the scale and
accuracy at which we can image both the cortex and subcortex is becoming ever
more improved. The benefit of UHF MRI compared with lower field strength MRI
is evident (Cho et al., 2008; Isaacs et al., 2020; Kerl et al., 2012). As field strength
increases, the signal-to-noise (SNR) increases linearly with it (Edelstein et al., 1986).
This is important, especially for the subcortex, as the SNR decreases substantially
in deeper parts of the brain due to the distance of the regions from the head coils.
In addition to an increase in SNR, the contrast-to-noise ratio (CNR) also increases
with field strength due to the larger difference in relaxation times between grey
and white matter (van der Zwaag et al., 2016). The gain in signal can be used
as a tradeoff with other MR parameters, such as spatial resolution or acquisition
time. This propensity for increased spatial resolution is especially helpful for the
subcortex, due to the size and spatial proximity of many of its nuclei. The basal
ganglia, for example, contains nuclei that are notoriously densely packed and, as
with the STN, have volumes as little as 80 mm3 (Alkemade et al., 2020a). With
structural imaging, where the average spatial resolution is approximately 1 mm3,
it is possible to acquire enough voxels within these structures to know where they
are. In functional imaging, where the standard spatial resolution is approximately
27mm3, it would only be possible to acquire around 3-4 voxels within the STN.
Moreover, this has not yet taken into account partial voluming effects, meaning the
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signal within each voxels is likely a mixture of multiple structures, a ‘subcortical
cocktail’ if you will (De Hollander et al., 2015).

The field of functional MRI is almost exclusively based on the qualitative as-
sessment of neural activity, namely, the blood-oxygen level dependent (BOLD)
response. The basic assumption of BOLD imaging is that when regions of the
brain are recruited to perform a function, they will require an increased blood
flow of oxygenated blood, to match the neuronal energy demand. This is known
as neurovascular coupling. As the neural activity will also increase oxygen con-
sumption in the area, the observed BOLD response is a mixture of both processes;
increased presence of oxygenated blood (increasing signal) and increased oxygen
consumption (decreasing signal). As one could expect, the BOLD response is
therefore also heavily dependent on the vascular properties and organization of a
particular region. The interpretation of the BOLD response relies on the assumed
linearity between the hemodynamic response function (HRF) and neural activity.
This method, although the standard in the field, is by no means perfect, as will be-
come apparent throughout the work in this thesis and the discussion that follows.
Although multiple studies have at least partially confirmed the linearity of the
relationship between the HRF and neural activity (Liu et al., 2010; Logothetis et al.,
2001), these findings have almost exclusively focused on the cortex (Kim and Ress,
2017; Taylor et al., 2018). As will become incessantly apparent throughout this
thesis, the subcortex is underrepresented. Few studies have attempted to charac-
terize the effect of vasculature on the HRF in the deep brain, though differences
between the cortex and subcortex have been found (Duvernoy, 1999; Lewis et al.,
2018; Tatu et al., 1998; Wall et al., 2009). Subcortical BOLD responses appear to
peak earlier than those observed in the cortex and the post-stimulus undershoot
normally associated with the canonical HRF is not always seen (Kim et al., 2022).
Physiological noise is also more of an issue in the subcortex due to its proximity
to large vessels (Singh et al., 2018). The cardiac system produces artefacts due to
changes in blood flow and physical pulsation of vessels (Dagli et al., 1999; Krüger
and Glover, 2001), while the respiratory system produces artefacts due to arterial
pressure changes and effects on B0 (Raj et al., 2001; Wise et al., 2004). Due to all of
this, accurately imaging the subcortex requires numerous technical considerations.

To overcome at least some of these limitations, I have developed and imple-
mented protocols tailored to the subcortex and used advanced processing steps to
aid in reducing aspects like physiological noise (e.g., RETROICOR; Glover et al.,
2000). Additional promising technical steps have allowed us to improve the signal
we acquire, or at least lower the scanning time required. For example, partial
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Fourier imaging allows us to directly measure only a subset of k-space, while
maintaining the ability to reconstruct the entire image. While in theory only 50% of
k-space data needs to be collected, in practice functional imaging requires around
75%. Another method that I use to cut down the acquisition time is multiband.
Multiband allows us to excite multiple slices of a volume at once, giving the op-
portunity to increase spatial or temporal resolution. Parallel imaging techniques
such as GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) can
similarly aid in cutting down the acquisition time. Of course, these all come with
their own set of drawbacks, usually in the form of a signal-to-noise penalty. A
careful balance between these parameters has given us the ability to image the
subcortex in unprecedented detail.

Based on all of this, it is obvious that imaging the subcortex is a difficult feat. It
is therefore not surprising that controversies have arisen around MRI findings of
subcortical structures. The cortico-basal-ganglia model described in Fig 1.2 is based
on countless research into the anatomy of action selection and inhibition. Recent
advances in UHF methods have however, brought these models into dispute
(Hollander et al., 2017; Isherwood et al., 2023a; Miletić et al., 2020). Researchers
investigating human behaviour are often limited to either mathematical models
describing behavioural data or statistical models describing activity patterns in
the brain. These endeavors focus on different levels of analysis (Marr, 1982),
but are rarely combined. In terms of these levels of analysis, one can describe
a problem in the algorithmic sense, where we focus on the process behind the
computation (using mathematical models). On the implementation side, we focus
on where the computation takes place in the brain (by analyzing brain patterns).
To make the most of both the behavioural and neural data, I attempt to associate
the algorithmic and implementational levels. Such associations can provide way to
mechanistically interpret our findings, something that standard analysis methods
in functional imaging or behavioural analysis cannot do.

Outline thesis

The aim of this thesis is to elucidate the underlying mechanisms that govern
response inhibition and interference resolution within the human subcortex. To
achieve this objective, I used an interdisciplinary approach that integrated methods
of meta-analyses, structural and functional UHF MRI, and cognitive modelling
techniques. Specifically, I used model-based methods to attempt to garner new
perspectives on how these subtypes of inhibition are implemented in the brain,
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and to what extent they overlap on a behavioural and computational scale. A
core aim is that the outcomes of this research can be leveraged to advance our
understanding of subcortical functioning, and that the techniques I developed can
serve as a valuable resource for the research community in the years to come. I
will now provide a short overview of each chapter of the thesis.

Chapter 2 marks the beginning of our endeavor to uncover the intricacies
of accurately imaging the human brain. We started by creating an up-to-date
catalogue of MRI databases that focus on the neurotypical population. We wanted
to extract quantitative measures of image quality across different databases, to
create an accurate outlook of the state of the MR field. The chapter evidences the
benefits of UHF MRI in brain imaging, particularly to the subcortex, and discusses
the tradeoffs between parameters such as acquisition time, spatial resolution and
SNR. The chapter also highlights the huge gains that open-access data sharing
can provide to the field and the choices that researchers face when balancing data
quantity and quality.

In chapter 3, we extend our structural investigation into the deep brain, focusing
on age-related changes across the adult lifespan and the composition of 17 subcor-
tical structures. The chapter defines these regions in terms of approximate iron
and myelin contents and their morphometry. We acquire novel insights into the
heterogeneity of these complex regions including locational changes, which have
large consequences for general use atlases of the human subcortex. The chapter
emphasizes the need to accurately map subcortical structures for both structural
and functional inference and outlines the vast array of information we can gain
from tailored MR sequences.

In chapter 4, we delve into the existing literature that examines response inhibi-
tion and interference resolution. This allowed us to gain a comprehensive under-
standing of the knowledge gaps within the field, providing a valuable foundation
for our own research. While the previous chapters focused on our structural
understanding of subcortex, we here change perspective and investigate their
functional counterpart. To do this, we employed an activation likelihood estima-
tion methodology to aggregate previous functional studies of inhibition-related
functions, focusing on studies that adhere to a strict set of criteria. Our results
indicate a relatively unharmonious functional map of inhibition across the research
field, citing large differences in regions between different meta-analyses as well as
between various subtypes of inhibition. Although we answered questions relating
to inter-individual similarities and differences between response inhibition and
interference resolution, many questions remained unanswered.
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To complement the inter-individual results of our meta-analysis, chapter 5
outlines our intra-individual investigation into response inhibition and interfer-
ence resolution. Using the information from our previous chapters, we designed,
streamlined, and optimized a functional study that provided us with state of the
art structural, functional and behavioural data in both response inhibition and
interference resolution tasks. Our methodology allowed us to compare the sub-
types of inhibition, while minimizing individual differences using intra-individual
comparisons. We found that not only do response inhibition and interference
resolution tasks have relatively little behavioural overlap, but that their implemen-
tation in the brain is also rooted in distinct networks. By advancing our analysis
with a model-based technique, we also show differences in computational aspects
of the two inhibition-related functions.

Our exploration of response inhibition culminates in chapter 6, where the out-
comes of our functional and behavioral investigations are merged, and four addi-
tional SST datasets are reprocessed and reanalyzed to shed light on the inconsis-
tencies present within the field. We take advantage of open-access data to combine
data points from multiple datasets without the need to incorporate only summary
measures. We found that, in contrast to historical models of response inhibition,
successful inhibition does not appear to rely on the canonical cortico-basal-ganglia
pathways. We instead found that failures of response inhibition drive the activa-
tion of multiple subcortical nodes previously theorized to underpin successful
inhibition. These findings, mixed with other literature on the topic, suggest that
there is much more investigation needed into the networks that underly successful
response inhibition in the human subcortex.

Finally, chapter 7 provides a comprehensive summary of the key findings
presented in this thesis and elucidates their implications for future research. I
follow this with a contextual discussion of these findings, presented in relation to
recent publications.
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Quantity and quality: Normative open-access neuroimaging
databases

This chapter is published as:
S. J. S. Isherwood, P.-L. Bazin, A. Alkemade, and B. U. Forstmann (2021a). Quantity
and quality: Normative open-access neuroimaging databases. PLOS ONE 16.3,
pp. 1–30. DOI: 10.1371/journal.pone.0248341.
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Abstract

The focus of this article is to compare twenty normative and open-access
neuroimaging databases based on quantitative measures of image quality,
namely, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). We further the
analysis through discussing to what extent these databases can be used for the
visualization of deeper regions of the brain, such as the subcortex, as well as
provide an overview of the types of inferences that can be drawn. A quantitative
comparison of contrasts including T1-weighted (T1w) and T2-weighted (T2w)
images are summarized, providing evidence for the benefit of ultra-high field MRI.
Our analysis suggests a decline in SNR in the caudate nuclei with increasing age,
in T1w, T2w, qT1 and qT2* contrasts, potentially indicative of complex structural
age-dependent changes. A similar decline was found in the corpus callosum of
the T1w, qT1 and qT2* contrasts, though this relationship is not as extensive as
within the caudate nuclei. These declines were accompanied by a declining CNR
over age in all image contrasts. A positive correlation was found between scan
time and the estimated SNR as well as a negative correlation between scan time
and spatial resolution. Image quality as well as the number and types of contrasts
acquired by these databases are important factors to take into account when
selecting structural data for reuse. This article highlights the opportunities and
pitfalls associated with sampling existing databases, and provides a quantitative
backing for their usage.
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2.1 Introduction

The purpose of this article is to summarize and compare some of the most promi-
nent existing normative open-access structural magnetic resonance imaging (MRI)
databases from a variety of research institutions, including our own Amsterdam
ultra-high field adult lifespan (AHEAD) database (Alkemade et al., 2020a). The
need for and benefit of open-access imaging databases has been emphasized in
a number of recent reviews (Eickhoff et al., 2016; Madan, 2017; Milham et al.,
2018). The community-wide movement towards open-access data sharing in the
last decade is expected to massively advance the neuroimaging field and share
the wealth of available data between researchers and institutions. Some of these
benefits are obvious, such as the financial advantage of data sharing and the reuse
of data between institutions. The re-analysis of acquired MR images also serves
to aid reproducible research and provide multi-party levels of quality control.
On top of this, the ability of new processing pipeline tools and analyses meth-
ods benefit greatly from the larger sum of data that the software can be trained
on. It is important to acknowledge that large-scale data-sharing comes with its
own disadvantages. Analyses based on post-hoc hypotheses and ‘data-mining’
can lead to spurious false positive findings (Poldrack and Gorgolewski, 2014).
Due to the sheer number of possible analyses in larger databases this problem
grows increasingly likely. Data acquired within a specific framework and col-
lected with a specific purpose may affect the extent to which this data can be
used for separate analyses (Verheij et al., 2018). The questions investigated by
the numerous neuroimaging databases described in this paper are diverse, with
some attempting to bridge the gap between genetic influences and brain structure
and others looking at the impact of the environment on the development of the
human brain (Holmes et al., 2015; Nooner et al., 2012; Van Essen et al., 2013). To
this end, there are already a multitude of findings and publications arising from
the data made accessible through these databases (Betzel et al., 2014; Chan et al.,
2018; De Hollander et al., 2015; DuPre and Spreng, 2017; Geerligs et al., 2015;
Glasser et al., 2016; Gratton et al., 2018; Holmes et al., 2012; Huntenburg et al.,
2017; Mikhael et al., 2018; Pagliaccio et al., 2015; Wang et al., 2015; West et al.,
2019). To our knowledge, a systematic comparison of these data, in terms of image
quality, has not yet been published. This information is invaluable for the users
of such databases to determine what conclusions they can reliably draw from
the wealth of information provided. Through this analysis, we aim to aid in the
accurate and valid use of the vast imaging data researchers have at their fingertips.
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Additionally, though many of these databases contain functional (f)MRI data (both
resting state and task-specific), we will focus instead on brain anatomy and the
inferences that can be made from structural imaging techniques. For comparisons,
we will use quantitative measures of image quality, namely the signal-to-noise
ratios (SNRs) and contrast-to-noise ratios (CNRs) associated with the MR images
provided by each database. In short, the SNR infers the propensity of an MR
image to delineate brain structures and detect pathology (Michaely et al., 2007). By
providing these estimates for each database, we are giving a quantitative measure
of two dimensions; image quality (SNR) and contrast (CNR). An increase in these
quantitative measures improve the qualitative ability of e.g., manual or automatic
parcellation. The CNR gives a valuable inference on the ability to spatially resolve
detail in an image. Therefore, using different databases with varying CNRs may
result in different outcomes depending on the reason they are being used (e.g.,
segmentation, volumetric measurements, delineation of cortical folding). SNR in-
herently provides an estimate of the noise level in a structure or image and higher
image quality is both quantitively and qualitatively useful. Of course, the SNR is
often used as a trade-off parameter to gain improvements in another aspect of the
imaging method such as resolution, scan time, field of view (FOV) and indirectly,
sample size. For example, a database with a low CNR and a large sample size
may not be pragmatic to use for the parcellation of subcortical nuclei but would
provide accurate volumetric whole brain estimates of a population. Conversely,
a database with a high CNR and small sample size may not be able to provide
reliable information at a population level but may deliver an insight into the
substructure of a single region. Thus, larger databases with vast and multimodal
data of each individual have already provided population-level information on
cortical arrangement as well as the impact of genetics and the environment on the
human brain (Bischof and Park, 2015; Blesa et al., 2016; Cheng et al., 2020; Glasser
et al., 2016; Lyu et al., 2020; Strike et al., 2019) which would not be possible in
smaller databases.

There are currently at least 71 whole-body 7T MRI scanners worldwide
(Forstmann et al., 2017). Given the number of articles now specifically comparing
3T and 7T imaging of neurological disease, it is evident that higher field strengths
are beneficial to answer questions in both the cognitive and clinical neurosciences
(De Graaf et al., 2013; Moon et al., 2016; Noebauer-Huhmann et al., 2015; Springer
et al., 2016; Tallantyre et al., 2009). The signal-to-noise ratio (SNR) increases in
an almost linear fashion with field strength (Collins and Smith, 2001; Vaughan
et al., 2001) giving the potential for both greater spatial resolution and a higher
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CNR. Some of the databases described here have taken advantage of this, but the
cost of use of these higher field strengths and their limited availability make it
challenging for many large-scale studies or institutions without access. Thus, the
trade-off between the quantity and quality of acquired MR data arises.

The gains from ultra-high field MRI (UHF MRI) are especially important when
investigating deeper regions of the brain (e.g., subcortex). UHF MRI can provide
reduced partial volume effects due to increased spatial resolution, allowing for the
visualization of finer anatomical detail (Federau and Gallichan, 2016; Lüsebrink
et al., 2013). Historically, the lack of signal and contrast within the deep brain is the
reason for the only recent development of subcortical maps in vivo (Johansen-Berg,
2013; Keuken and Forstmann, 2015). UHF MRI and its accompanying increase in
SNR and contrast capacity will aid in the understanding of the structure of these
deeper structures. Around 93% of the grey matter nuclei within the subcortex,
making up almost a quarter of the total human brain volume, are currently not
represented in standard MRI atlases (Alkemade et al., 2013; Evans et al., 2012).
Some subcortical structures can be delineated through the use of these atlases, such
as parts of the striatum, but most are too small to be manually or automatically
parcellated (Levitt et al., 2013). Iron-rich structures including regions constituting
the basal ganglia are difficult to delineate on standard T1w scans (Priovoulos et al.,
2018; Visser et al., 2016), but specialised sequences can take advantage of the larger
T2* contrast differences at higher field strengths (Cho et al., 2011). For example,
the abundance of iron in the substantia nigra (SN) and subthalamic nucleus (STN)
make it an ideal target for T2* and SWI contrasts which can take advantage of
these differences (Alkemade et al., 2017; Kerl et al., 2012; Schäfer et al., 2012; Shroff
et al., 2009). The delineation of these structures is made even harder by the limited
SNR, due to the larger distance from the head coils (Hollander et al., 2017).

Methods to improve image quality in MRI are not only limited to increasing
the field strength of the scanner. The gradient strength, radiofrequency coils and
use of optimized sequences also have a marked effect on acquisition efficiency.
One such example is the Connectom scanner, of which there are currently only
three in the world, which benefits from gradient strengths 3-8 times that found
in standard 3T scanners. As with field strength, this factor facilitates both an
increase in spatial resolution and a reduction scan time. Though previous studies
have indicated the advantage of non-standard sequences (e.g., T2*, QSM, SWI),
owing to their capacity to increase the number of observable structures and to
observe smaller brain regions (e.g., fibre tracks, nuclei) in deeper areas of the
brain (Deistung et al., 2013; Kerl et al., 2012). The vast majority of databases
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focus on more standard T1w and T2w images, which are essential for volumetric
calculations and distinguishing between grey and white matter regions but do
not have the ability to quantify or delineate smaller and adjacently located nuclei
(Keuken et al., 2014; Trutti et al., 2019).

2.2 Methods

The purpose of this article was not to present and analyse an exhaustive list
of all currently available open-access neuroimaging databases, but to provide
quantitative measures and accessing instructions for some of the most notable
ones that meet our criteria. Most of the databases were identified using a structural
MRI database list kindly provided from a cited paper which can be accessed here:
https://github.com/cMadan/openMorph (Madan, 2017). Two of the databases
were identified as they were associated with the authors of this article (Alkemade
et al., 2020a; Forstmann et al., 2014) and a further two databases were identified
from the literature (Haxby et al., 2011; Tardif et al., 2016). All data was freely
accessed in November 2018 and downloaded using the accessing instructions in
Table A.1.

The selection criteria of the databases presented in this article were based on
three characteristics. Firstly, the databases had to be normative, that is, made up of
individuals that were reported as healthy at the time of scanning with no clinical
presentation of neurological, psychiatric, neurodegenerative or peripheral disease.
Secondly, the databases had to be a collection of curated images, uni- or multi-
modal, that were acquired to be of similar composition (based on sequences and/or
sites) to that of other images in the database. The reason for this criterion is that
we assess five subjects randomly from each database and therefore must be sure
that their quality reflects that of the rest of the database accurately. Thirdly, these
databases are open-access to the extent that they are accessible to the worldwide
scientific community completely free of charge and without access barriers. Such
access barriers include, for example, memberships, a specific institutional position
(e.g., professorship) or the requirement of some type of institutional infrastructure
(e.g., Federalwide Assurance).

The quality of the images acquired through the use of MRI are characterized
by three main components: the acquired spatial resolution, the signal-to-noise
ratio (SNR) and the contrast-to-noise ratio (CNR). These three aspects are in turn
governed by the specific acquisition parameters used when obtaining the MR
images. In the analysis presented here, the SNR was calculated by measuring the
mean signal at the most posterior part of the corpus callosum (CC) and dividing it
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by its standard deviation. We also calculated the SNR of a grey matter region,
namely the caudate nuclei (CN). To provide a measurement of CNR for each
image, we computed the ratio of the difference in signal to the difference in noise
of the CC and left and right caudate nuclei (LCN and RCN, respectively). These
regions were chosen as we opted to compare the signal between a white matter
area (CC) and a grey matter area (CN) of deeply situated brain regions. The SNR
was calculated in both the left and right CN as a quality control step, under the
assumption that these would yield similar SNR estimates. To test this, we used
the programming language R and the ‘BayesFactor’ package to compute both
frequentist and Bayesian t tests, respectively (Morey and Rouder, 2015; Team R.
Core., 2019). The latter allows us to provide evidence for the null hypothesis (that
there is no difference in signal between the left and right caudate nucleus). In
order to have a singular SNR measure for both CN, we used the summation of the
signal from 27 voxels from both regions and divided it by the standard deviation
of the overall 54 voxels. This results in an SNR that is different than simply
taking the mean of both SNR measurements for each CN. Equation 2.1 shows the
calculation for which CNR values were computed. µCC indicates the mean signal
of the CC, µCN indicates the mean signal of both CN. sCC specifies the standard
deviation of the CC and sCN specifies the standard deviation of both CN.

CNR =
µCC � µCNp
sCC2 + sCN2

(2.1)

As many of the databases described here do not report SNR estimates, we
decided to download a sample of the available data from each database and
compute these indices to be able to make accurate comparisons between them.
Importantly, even when SNR estimations were calculated by the databases, we
performed a re-estimation to ensure that all SNRs presented here were estimated
using the same protocol. The SNRs can be estimated using different structures
and therefore derive values that are not always comparable between different
procedures. To do this, five subjects from each database were selected at random
and their available images downloaded. The SNRs and CNRs were calculated for
each available contrast within each database. Databases that include large age
ranges were split into age groups of young (18 – 28), middle-aged (34 – 53) or
elderly (63 – 86). For these databases, five participants were taken from each age
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group so that we could compare SNR and CNR estimations across age-ranges.
Although the proportion of each database used for the analysis may differ, they
are statistically comparable as the same number of participants were selected
randomly from the sample of each database.

For comparisons between databases the analysis focuses on the SNR of the
CC (SNRCC), for simplicity, unless otherwise stated. Sequences incorporating
multiple echo times (e.g., MP2RAGEME) technically provide multiple contrasts
in one sequence and were therefore all included in the estimates. For example,
a sequence with four TEs (e.g., MP2RAGEME) would give four contrasts per
participant. We chose five subjects to ensure feasibility of the manual measures
while accounting for potential variations in quality within a database. The CC
and CN may not be the optimal structures for SNR comparisons for all of the
contrasts for each database, but using these structures allows comparability over
the entire analysis. To calculate the SNR of the CC, LCN and RCN, one expert
rater manually delineated the regions using the MIPAV imaging software (Medical
Image Processing, Analysis and Visualization; McAuliffe et al., 2001). Once the
centre of the regions of interest were accurately delineated, a 3 x 3 x 3 cube of
voxels was taken around one midpoint voxel to calculate the SNR using the
mean and standard deviation of 27 contiguous voxels in the structure (Fig 2.1). A
second method to calculate the SNR of these structures was also explored. Instead
of taking 27 contiguous voxels, we took the voxel volumes of each image into
account and measured the signal of 27 voxels from the same volumetric space.
This involves simply normalizing the size of the cube of voxels measured by the
images with the largest voxel size, so to measure from approximately the same
area of each structure. The results were in line with what is reported here, and
therefore we only report the measurements acquired from the first method.

To analyze the relationship between scan time and spatial resolution and scan
time and SNRCC, two linear regression models were setup. Both models used scan
time as a predictor variable and either spatial resolution or SNRCC as the inde-
pendent variable. This would allow us to observe a linear relationship between
either of the two parameters. To correct for multiple comparisons, a Bonferroni
adjustment was employed to maintain a 95% confidence in the analysis, giving a
new significance threshold of 0.025.

We also present comparisons between slab images (small FOV) and whole brain
images from databases that offer both, in order to demonstrate differences in SNR
and CNR at higher resolutions. Both frequentist and Bayesian t tests were em-
ployed in R to compare these. To compare age differences across multiple contrasts,
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Figure 2.1: Sagittal (left), axial (middle), and coronal (right) views indicating the structures from
which SNR measurements were taken. These T1w images were taken from one subject in the
MPI-CBS database. CC, corpus callosum; RCN, right caudate nucleus; LCN, left caudate nucleus.

linear mixed effect models from the ‘lme4’ R package were used (Bates et al., 2014).
Model 1 (null model) included the respective databases as a random intercept
without adding any effect of age on SNR/CNR. Model 2 (full model) included
both the database as a random intercept and age as a fixed effect. The likelihood
estimations of each model were then compared by a likelihood ratio test though
the use of an Analysis of Variance (ANOVA). A Bayesian linear modelling tech-
nique was also used, where the resultant Bayes factors were compared between
model 1 and model 2. We opted to include the SNR and CNR data from all of the
databases, even those without large age ranges, so to use as much of the wealth
of information as possible for our statistical tests. This results in a larger centre
of mass on the younger age group than the middle-aged and elderly groups, and
although this does not result in an increase in power, it provides a more accurate
estimate of the effect of age on SNR and CNR. For the model comparisons, age
was used as a continuous predictor and therefore categorical ages were not used
within the statistical analysis, these were only used for visualization.
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To address the issue of reliability when taking a small subpopulation from large
samples, we re-ran some of the SNR and CNR analysis with a different sample
from the databases. 5 or 15 (if they included large age-ranges) additional samples
were taken from each database that allowed it (dependent on the original sample
size) and SNR measurements were calculated again from their T1w images for
comparison against the original sample. Of the 20 databases included in this article,
17 had a sample size large enough for us to take additional measurements. SNR
measurements were taken from the left caudate nucleus, right caudate nucleus
and corpus callosum of 164 separate T1w images.

2.3 Results

Based on our search, 41 databases were initially identified. After the first screen-
ing, 5 were excluded on the basis of access requirements. Of the remaining 36
databases, 20 were included in this article for description and comparison (see
Fig 2.2 for Preferred Reporting Items for Systematic Reviews and Meta-Analyses;
PRISMA flow diagram). Below we discuss these 20 databases that follow the
three criteria including 250 (Lüsebrink et al., 2017), a completed Germany-based
database which highlights its potential use for building an in vivo MR brain at-
las due to its ultrahigh resolution whole brain images of one subject; Age-ility
(Karayanidis et al., 2016), a completed Australia-based database investigating
the relationship between cognitive control and adaptive/maladaptive behaviours
across the adult lifespan; the AHEAD database (Alkemade et al., 2020a), an ongo-
ing Netherlands-based database aiming to acquire high-resolution images of the
human subcortex and map so-called terra incognita; the Atlasing of the Basal Gan-
glia (ATAG) project (Forstmann et al., 2014), a completed Netherlands/Germany-
based database whose aim was to acquire high-resolution data to observe anatom-
ical differences over the adult lifespan; the Brain Genomics Superstruct Project
(GSP; Holmes et al., 2015), a completed US-based database looking to solidify and
find links between brain function, behaviour and genetic variation; the Cambridge
Centre for Aging and Neuroscience (Cam-Can; Shafto et al., 2014; Taylor et al.,
2017), an ongoing UK-based database aiming to characterize age-related changes
in cognition and brain structure and function, and to uncover the neurocognitive
mechanisms that support healthy aging; the Dallas Lifespan Brain Study (DLBS;
http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), an ongoing
US-based database designed to accelerate our understanding of both the preser-
vation and decline of cognitive functioning across the adult lifespan; the Human
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Connectome Project Young Adult (HCP-YA; Milchenko and Marcus, 2013; Van
Essen et al., 2013; Xu et al., 2012), an ongoing US-based database aiming to gen-
erate a complete and accurate description of the connections amongst grey mat-
ter locations in the human brain at the millimeter scale. Information eXtraction
from Images (IXI; http://www.brain-development.org), a completed UK-based
database from three London Hospitals aimed to aid in decision support in health-
care and the analysis of images obtained in drug discovery; Kirby 21 (Landman
et al., 2011), a completed US-based database aiming to assess the scan-rescan
reproducibility of a 60 minute scanning session, wanting to establish a baseline
for developing multi-parametric imaging protocols; Maastricht (Gulban et al.,
2018), a completed Netherlands-based database with the aim of facilitating the
development of segmentation algorithms on the challenging nature of 7T MR data;
Multiple Acquisitions for Standardization of Structural Imaging Validation and
Evaluation (MASSIVE; (Froeling et al., 2017)), a completed Netherlands-based
single-subject dataset aiming to serve as a representative testbed for diffusion-MRI
correction strategies, image processing techniques and microstructural modelling
approaches; the Midnight Scan Club (MSC; Gordon et al., 2017), a completed
US-based database of scientific volunteers wanting to increase our understanding
of brain function on the individual level, as opposed to just the central tendencies
of populations; the Max Planck Institute – Human Brain and Cognitive Sciences
repository (MPI-CBS; Tardif et al., 2016), a completed Germany-based database
wanting to stimulate the development of imaging processing tools for high resolu-
tion and quantitative imaging, that have been mainly designed for lower quality
images; Max Planck Institute – Leipzig Mind Brain Body (MPI-LMBB; Mendes
et al., 2017), another completed Germany-based databases which aimed to ex-
plore individuals variance across cognitive and emotional phenotypes in relation
to the brain; Nathan Kline Institute – Rockland Sample (NKI-RS; Nooner et al.,
2012), an ongoing US-based database aiming to provide normative trajectories of
brain development so to facilitate the identity of pathological markers; Pediatric
Template of Brain Perfusion (PTBP; Avants et al., 2015), a completed US-based
database focusing on increasing our understanding of adolescent brain develop-
ment with multi-model MR imaging and its relationship with both environmental
and cognitive measures; RAIDERS (Haxby et al., 2011), a completed US-based
database focusing on functional imaging during segments of full-length feature
film “Raiders of the Lost Ark”; the Southwest University Adult Lifespan Dataset
(SALD; Wei et al., 2018), a completed China-based database aiming to observe how
the normative brain changes structurally and functionally over the adult lifespan;
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and StudyForrest (Hanke et al., 2014; Sengupta et al., 2016), an ongoing German-
based database aiming to provide data in a more complex setting, as opposed to
the simplified experimental designs normally used, to therefore provide a more
ecologically valid insight into brain function.

Table 2.1 presents an overview of these databases including information on field
strength, sequences and the number of participants. Example T1-weighted (T1w)
images taken from each database are presented in Fig 2.3. Further information,
including the website address and accessing instructions of each database can be
found in Table A.1. Detailed descriptions of the individual databases can be found
on their website address or descriptor papers.

We would like to acknowledge the importance of other neuroimaging databases
that do not meet our selection criteria, such as the Open Access Series of Imaging
Studies (OASIS; Marcus et al., 2010; Marcus et al., 2007, 1000 Functional Con-
nectome Project (FCP; Mennes et al., 2013), Alzheimer’s Disease Neuroimaging
Initiative (ADNI; Mueller et al., 2005; Weiner et al., 2015), Autism Brain Imaging
Data Exchange (ABIDE; Di Martino et al., 2014), Brain Images of Normal Sub-
jects (BRAINS; Job et al., 2017), Australian Imaging Biomarkers and Lifestyle
Study of Aging (AIBL; Ellis et al., 2009), Pediatric Imaging, Neurocognition,
and Genetics (PING; Jernigan et al., 2016), Adolescent Brain Cognitive Devel-
opment (ABCD) study (Casey et al., 2018), Attention Deficit Hyperactivity Disor-
der (ADHD) 200 (Bellec et al., 2017), Child Mind Institute Healthy Brain Network
(CMI-HBN; Alexander et al., 2017), Center for Biomedical Research Excellence (CO-
BRE; http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), Con-
sortium for Reliability and Reproducibility (CoRR; Zuo et al., 2014), Function
Biomedical Informatics Research Network (fBIRN; Keator et al., 2016), Mini-
mal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD; Malone et al.,
2013), National Alzheimer’s Coordinating Center (NACC; Morris et al., 2006), Na-
tional Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA;
Brown et al., 2015), Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite
et al., 2014), Mindboggle-101 (Klein and Tourville, 2012), SchizConnect (Wang
et al., 2016), OpenNeuro (Poldrack et al., 2013) and the UK Biobank (Sudlow et al.,
2015). These databases, such as the ABCD database, and the PING database are
also of great interest, but they are not openly available to researchers outside of
NIH institutions, and thus do not meet our criteria for inclusion in this study (see
Table A.2 for an overview of the inclusion criterion these databases did not meet).
Additionally, we would like to recognize that many clinical databases also contain
images of healthy individuals. The reuse of databases consisting of only healthy
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Figure 2.2: PRISMA flow diagram.
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Figure 2.3: Mid-sagittal T1w images from each neuroimaging database. One participant was
selected at random from each of the databases to serve as an example of the image quality
expected.
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individuals is more convenient, creating an even lower threshold for the reuse
of data. We would like to emphasize that the exclusion of normative data from
clinical databases, databases containing non-harmonious data or databases that
have institutional and/or positional requirements is in no way a comment on their
data quality or usefulness.
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Quantity and quality

Because of the large age-ranges, fifteen participants were used for the following
subset of databases (AHEAD, ATAG, CAMCAN, DLBS, IXI, MPI-LMBB, NKI-
RS, SALD). Ten databases therefore present a mean SNR value of five partici-
pants, eight databases present a mean SNR value of fifteen participants and two
databases (MASSIVE and 250) were comprised of only one subject. For this case,
five scanning sessions were taken, and the mean SNR calculated. 670 images were
analysed in total for the main analysis, and a further 164 to test the reliability of
the initial sample.

Described below are the results of the SNR and CNR analysis. To comply
with the Health Insurance Portability and Accountability Act (HIPAA, https:
//www.hhs.gov/hipaa/index.html) and the European equivalent General Data
Protection Regulation (GDPR, https://eugdpr.org/), it is agreed upon by the
scientific community that high resolution MRI images give the means for identifi-
ability and facial reconstruction and must therefore be subject to precautionary
measures to ensure privacy (Bischoff-Grethe et al., 2007). Therefore, the images
provided here by the cited databases are coupled with a defacing mask to protect
against identifiability, with the exception of the IXI and MSC databases. Other than
this essential step, all included databases offer unprocessed images or both unpro-
cessed and pre-processed images, with the exception of the MPI-CBS database.
When available, all calculations regarding SNR and CNR used the unprocessed
MR images.

Due to the inherent trade-off between SNR and spatial resolution, we opted to
normalize the SNR and CNR by dividing the original ratio values by the voxel
dimensions of the acquired images. This gives a more accurate depiction of the
image quality of each database. Therefore, unless otherwise specified, or in the
case of quantitative images, we show normalized SNR values, not raw SNR values.
A graphical comparison of the raw SNR and the normalized SNR for the T1w
images of each database is shown in Fig A.1.

2.3.1 Comparing T1w images

As all the databases presented here contained a T1w image for each participant,
these were used as the main sample to be compared. A frequentist and Bayesian
paired t-test were used to compare the values of the two caudate nuclei within each
database, concluding that there were indeed no significant differences between the
calculated SNR, as there is substantial evidence for the null hypothesis (p = 0.630,
t = 0.492, DF = 14, BF = 0.292; Jeffreys, 1935). The SNR of each nuclei, averaged by
database, are visualized in Fig 2.4.
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Figure 2.4: SNR estimations for the left and right caudate nucleus. Data averaged over the
individuals of each database. Error bars indicate standard error of the mean.

Fig 2.5 visualizes the relationship between sample size and SNR. This indirect
tradeoff between the two is perhaps anticipated, simply due to the costs associated
with both an increased number of participants and superior acquisition methods
(e.g., higher field strengths and increased scan time). Of course, both sides of the
spectrum are accompanied with their own advantages and disadvantages. Larger
sample sizes can reduce the susceptibility to spurious findings and deliver greater
statistical power, but may have to sacrifice some features of the imaging data (e.g.,
voxel resolution, SNR or number of modalities). For example, databases with large
sample sizes and large voxel sizes may not be suitable for studying morphometric
changes that occur in small subcortical nuclei but can provide accurate estimations
of cortical thickness with a high statistical power.

Fig 2.6 displays the normalized SNRCC and CNR values of the T1w images from
each database. The results are present as ascending from bottom to top, based
on their SNR estimation, ranging from 15.8 (GSP) to 292.3 (250 database). Their
numerical values are presented in Table 2.2.

To investigate the similarity of the first sample of measurements to the second
sample, a Bayesian ANOVA was used to provide evidence for or against the null
hypothesis (that these samples were taken from the same distribution). The Bayes
Factors (BF) resulting from this analysis for each structure are as follows: corpus
callosum SNR BF = 0.139, caudate nuclei SNR BF = 0.129, and the CNR BF = 0.224.
Based on Jeffreys, 1935 this provides substantial evidence for the null hypothesis,
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Figure 2.5: The relationship between sample size and SNRCC . Error bars indicate standard error
of the mean. Both the SNR values and the standard errors are presented on the log scale. Circular
symbols indicate 3T data, triangular symbols indicate 7T data.

Figure 2.6: Overview of ratios for databases containing a T1w image. SNRCC values are shown in
black, CNR values in grey. Each value has been normalized by the voxel dimensions specific to
the image it describes. Error bars indicate standard error of the mean. Databases marked with an
apostrophe (‘) indicate 7T data. The dotted vertical lines indicate the mean of the SNRCC (black)
and CNR (grey).
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Table 2.2: Summary table describing the SNRCC , SNRCN and CNR of the T1w images of each
database. Each ratio value is shown as the mean of all the subjects ± the standard error of the
mean. n indicates the number of subjects used for the calculations.

Database Sequence Contrast SNRCC SNRCN CNR N
250 MPRAGE T1w 292.3 ± 15.0 198.3 ± 14.6 93.5 ± 6.7 1
AHEAD MP2RAGEME T1w 83.4 ± 6.5 39.5 ± 1.3 28.5 ± 1.3 15
Age-ility MPRAGE T1w 31.4 ± 2.0 20.4 ± 2.0 5.8 ± 0.9 5
ATAG MP2RAGE T1w 118.6 ± 7.5 29.6 ± 1.4 19.6 ± 0.7 15
Cam-Can MPRAGE T1w 32.8 ± 3.0 24.1 ± 1.2 6.1 ± 0.5 15
GSP MEMPRAGE T1w 15.8 ± 0.8 8.8 ± 0.7 3.6 ± 0.2 5
DLBS MPRAGE T1w 38.3 ± 4.2 19.4 ± 2.7 4.8 ± 0.7 15
HCP-YA MPRAGE T1w 54.7 ± 5.6 40.4 ± 1.8 9.1 ± 1.3 5
IXI - T1w 58.0 ± 4.1 33.7 ± 1.8 4.2 ± 0.4 15
Kirby 21 MPRAGE T1w 34.2 ± 1.8 16.7 ± 1.1 6.9 ± 0.6 5
MAASTRICHT MPRAGE T1w 96.9 ± 2.2 36.6 ± 3.3 18.5 ± 2.1 5
MASSIVE 3DTFE T1w 17.2 ± 1.2 10.6 ± 0.3 6.4 ± 0.3 1
MSC - T1w 40.0 ± 2.0 26.6 ± 1.3 9.3 ± 0.2 5
MPI-CBS MP2RAGE T1w 271.3 ± 31.8 93.1 ± 15.9 42.4 ± 5.4 5
MPI-LMBB MP2RAGE T1w 26.6 ± 1.6 12.7 ± 0.3 6.4 ± 0.3 15
NKI-RS MPRAGE T1w 44.5 ± 2.5 28.1 ± 1.0 7.8 ± 0.4 15
PTBP MPRAGE T1w 43.6 ± 3.6 28.2 ± 1.8 9.2 ± 0.7 5
RAIDERS MPRAGE T1w 28.9 ± 3.8 16.9 ± 1.6 8.8 ± 0.9 5
SALD MPRAGE T1w 35.1 ± 2.1 23.9 ± 0.8 6.0 ± 0.2 15
StudyForrest 3DTFE T1w 75.2 ± 7.5 43.5 ± 4.1 18.5 ± 1.1 5

that both samples from each database come from the same distribution. This shows
that our sample-based method is reproducible across samples of the databases.
Although it would ideally be best to manually segment the CC and CN in each
subject, the simplified approach we take here provides a good trade-off between
accuracy and manageability given the large of amount of manual delineation that
had to be done in the original (665) and the second (164) sample.

2.3.2 Comparing T2w images

Fig 2.7 presents an overview of the estimated SNRCC and CNR of the six databases
containing T2w images. The results are ordered as ascending from bottom to top,
based on the SNRCC estimation, ranging from 11.8 (Cam-Can) to 51.6 (StudyFor-
rest). Their numerical values can be found in Table 2.3.

2.3.3 Relationships with scan time

We then turned to analyze the relationships between scan time and SNRCC as well
as scan time and the acquired spatial resolution. Fig 2.8A shows the relationship
between scan time and the normalized SNR for both 3T and 7T scanners separately.
It can be seen that there is a significant positive correlation within the 3T data,
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Figure 2.7: Overview of the ratios for databases containing a T2w image. SNRCC values are shown
in black, CNR values in grey. Error bars indicate standard error of the mean. The dotted vertical
lines indicate the mean of the SNRCC (black) and CNR (grey).

Table 2.3: Summary table describing the SNRCC , SNRCN and CNR of the T2w images of each
database. Each ratio value is shown as the mean of all the subjects ± the standard error of the
mean. n indicates the number of subjects used for the calculations.

Database Sequence Contrast SNRCC SNRCN CNR N
Cam-Can SPACE T2w 11.8 ± 1.4 14.3 ± 0.7 2.7 ± 0.2 15
HCP-YA SPACE T2w 26.7 ± 2.6 37.7 ± 3 11.5 ± 0.3 5
IXI - T2w 15.5 ± 1.4 17.7 ± 1 4.0 ± 0.2 15
MASSIVE 3DTSE T2w 21.9 ± 2.0 13.8 ± 1.8 2.2 ± 0.4 1
MSC - T2w 16.0 ± 1.5 23 ± 2.3 5.2 ± 0.7 5
Forrest 3DTSE T2w 51.6 ± 7.8 66.0 ± 3.0 10.2 ± 1.0 5
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Table 2.4: Normalized SNRCC , SNRCN and CNR values for the databases that presented slabs as
well as whole brain data. 15 subjects were used for all contrast types in these databases. Standard
errors of the mean are given for normalized SNRCC and CNR values. qT1, quantitative T1 map;
T1w, T1 weighted; PDw, proton density weighted; qT2*, quantitative T2* map; WB, whole brain;
SB, slab.

Database Sequence Contrast Type SNRCC SNRCN CNR
AHEAD MP2RAGEME qT1 WB 84.4 ± 8.3 68.4 ± 4.8 20.9 ± 2.1
AHEAD MP2RAGEME qT1 SB 123.3 ± 5.8 115.0 ± 6.4 34.7 ± 1.3
AHEAD MP2RAGEME T1w WB 83.4 ± 6.1 39.5 ± 1.5 28.5 ± 1.3
AHEAD MP2RAGEME T1w SB 157.1 ± 7.5 103.1 ± 5.9 37.4 ± 1.3
AHEAD MP2RAGEME PDw WB 97.5 ± 6.2 29.5 ± 2.4 1.5 ± 0.5
AHEAD MP2RAGEME PDw SB 147.8 ± 8.2 79.5 ± 6.4 8.3 ± 2.5
AHEAD MP2RAGEME qT2* WB 37.0 ± 2.1 22.1 ± 2.2 3.0 ± 0.4
AHEAD MP2RAGEME qT2* SB 63.8 ± 2.7 49.8 ± 4.4 6.4 ± 1.9
ATAG MP2RAGE qT1 WB 69.0 ± 2.7 51.8 ± 2.4 18.0 ± 0.6
ATAG MP2RAGE qT1 SB 110 ± 5.2 90.7 ± 3.9 22.6 ± 1.2
ATAG MP2RAGE T1w WB 118.6 ± 6.5 29.6 ± 1.4 19.6 ± 0.7
ATAG MP2RAGE T1w SB 146.2 ± 9.1 47.9 ± 2.1 23.3 ± 1.3

and the 7T data displays the same trend but does not show significance. This
relationship is expected, since longer scan times are associated with better image
quality. In addition to scan time predicting image quality in terms of SNRCC, a
negative relationship between scan time and the acquired voxel volume was found
(Fig 2.8B). Longer scan times in the presented databases are therefore indicative of
better T1w images both in terms of SNR and spatial resolution.

2.3.4 Quantitative T1 and FOV

Four databases provide quantitative T1 maps (qT1) in addition to T1w images.
Two of these databases also provide both whole-brain images as well as slabs with
higher resolution and a smaller FOV. A comparison of the normalized SNRCC

associated with the qT1 and T1w images of the same databases are shown in Fig
2.9.

Table 2.4 displays the SNRCC and CNR associated with the whole-brain and
slab images of the same contrasts acquired by these two databases (ATAG and
AHEAD). A frequentist and Bayesian paired t-test indicates that the slab images
have a significantly larger SNRCC than the whole brain images, demonstrating the
benefits of high resolution (p = 0.0017, t = 6.06, DF = 5, BF = 25.81). Though, this
does not appear to translate to a higher CNR (p = 0.074, t = 2.3, DF = 5, BF = 1.57).
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Figure 2.8: The relationship between the SNRCC and voxel dimensions of T1w images with
scanning time in 18 databases. A) Graphical representation of SNRCC and scan time. Error bars
indicate standard error of the mean. B) Graphical representation of voxel dimensions and scan
time. Both legends contain information relating to the adjusted R-squared value, intercept, slope,
F statistic, degrees of freedom and p-value. Circular symbols indicate 3T data, triangular symbols
indicate 7T data.
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Figure 2.9: Graphical representation of difference in normalized SNRCC values for quantitative T1
maps and T1-weighted images. Databases marked with an apostrophe (‘) indicate 7T data. qT1,
quantitative T1 map; T1w, T1-weighted; wb, whole-brain; sb, slab. Error bars indicate standard
error of the mean.

2.3.5 Age-related differences

Figs 2.10 and 2.11 display the differences in the SNR and CNR across the age
groups of young (age: 18 – 28), middle-aged (age: 34 – 53) and elderly subjects
(age: 63 - 86) in both T1w and T2w images. 165 T1w images and 50 T2w images
were used for model comparison. For the SNRCC on the T1w images, the full
model comprising age as a predictor was a significantly better fit than the null
model (p = 0.011). This relationship was also found for the T1w CNR results (p =
0.00037). In addition to age-related differences in the SNR of white matter areas
(SNRCC) and the CNR of T1w images, we also tested the relationship between
age and the SNR of a grey matter region (SNRCN). A significant effect of age was
found, indicating a loss of signal in the CN over age (p = 0.0062). We then turned
to analyze the effect of age on the MR signal of T2w images. Again, we were
interested in age differences in the SNRCC the SNRCN and the contrast difference
between the grey and white matter regions (CNR). Similarly to the T1w images,
an age-related decline in SNRCN and CNR was observed in the T2w images (p =
0.0019, p = 0.000022, respectively) even though the model comparison indicated
that the age-related differences in SNRCC were non-significant in the T2w images
(p = 0.24).
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To gain a greater insight into the relationship between age and the acquired
signal from these white and grey matter structures, we used a Bayesian linear
modelling technique. The resulting BFs from this method indicated a less conclu-
sive relationship than its frequentist counterpart in some respects. In terms of an
age-related reduction in signal within the T1w images, moderate evidence was
found for this hypothesis in the CN (BF = 5.52), followed by further moderate
evidence within the CC (BF = 4.29), and very strong evidence for this hypothesis
was found for the CNR (BF = 61.90). Turning to the T2w images, no evidence
in either direction was found for an age-related reduction in signal from the CC
(BF = 1.89), strong evidence was found for this hypothesis in the CN (BF = 14.51),
and across the age groups, the CNR appeared to show extreme evidence for a
relationship (BF = 504.22). Taken together, these results suggest the presence of an
age-related deterioration in signal in the caudate nuclei, inferred by both the T1w
and T2w images.

As a further assessment of age-related differences, we also compared the SNR
and CNR values across qT1 and qT2* images. We again compared linear mixed
effect models including age as a fixed effect and the database as a random intercept
to a null model without an effect of age. One database, MPILMBB, provides age
ranges of five years for each of their participants as opposed to a single age value,
presumably for privacy purposes. In order to derive reliable estimates when
comparing these mixed effect models, we randomly sampled ages for participants
in this database from a uniform distribution of the age range reported. We then
iterated over this a total of 1000 times and calculated results from the frequentist
and Bayesian model comparisons for each sampled age, below we report the mean
results for these iterations. Similarly to the T1w and T2w comparisons, both qT1
and qT2* maps showed a significant change in CNR across the adult lifespan (p
= 0.00032, BF = 73.25; p = 0.035, BF = 1.12). The SNRCN significantly declined in
both the qT1 and qT2* images (p = 0.0015, BF = 19.68; p = 0.00019, BF = 247.99,
respectively). A similar decline was found for the SNRCC in the qT2* images (p =
0.00063, BF = 34.83). Although, only a negligible decline in signal was found for
the CC in the qT1 images (p = 0.020, BF = 2.49).

2.4 Discussion

We present the first quantitative comparison exploring the image quality offered
by twenty open-access databases of structural MRI freely available to researchers
world-wide. To this end, SNRs were calculated from both the corpus callosum and
caudate nuclei. From these calculations, CNRs were derived, which in this case
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Figure 2.10: Comparison of ratios for T1w images across age groups. A) SNRCC . B) SNRCN .
C) CNR. Error bars indicate standard error of the mean. Each bar singular represents five
participants. Databases marked with an apostrophe (‘) indicate 7T data.
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Figure 2.11: Comparison of ratios for T2w images across age groups. A) SNRCC . B) SNRCN .
C) CNR. Error bars indicate standard error of the mean. Each bar singular represents five
participants.

can indicate the extent to which these images can distinguish between grey and
white matter. An additional analysis assessed differences in T1w and T2w SNR
values across the adult lifespan, taking advantage of larger imaging databases with
accompanying demographic information and large age ranges. Due to the wealth
of data provided by these databases, clear relationships between the scan time and
both acquired voxel dimensions and acquired SNRs could also be found, indicating
the efficiency of specific scanning protocols. As only a subset of the databases
offered multiple contrasts, direct inter-database comparisons between all contrast
types could not be provided. Within this subset, intra-database comparisons
between contrasts are possible. SNR and CNR estimations for the contrasts offered
by each database are displayed in the Table A.3.

The results of the SNR and CNR calculations show a clear benefit of using
UHF MRI, with the five 7T databases (250, AHEAD, ATAG, MAASTRICHT and
MPI-CBS) obtaining the largest values in the CC. Moreover, the MPI-CBS and 250
databases showed much higher image quality compared to the other databases.
It should be noted, however, that the images offered from the MPI-CBS database
include image post-processing pipelines that are not applied in any of the other
databases. Such processing pipelines can increase image quality substantially, and
are another benefit of openly accessible imaging data and protocols. Through the
availability of this data, exciting new data pipelines and tools can be developed
and shared. In Table A.3, you can find the SNRCC, SNRCN and CNRs for all the
images analyzed for each database. Note that this includes two databases (HCPYA
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and 250), which provide both processed and unprocessed images. A clear benefit
of post-acquisition processing pipelines can be seen when comparing these ratios
within-database. The processed T1w images provided by the 250 database increase
the SNRCC from 292.3 ± 15.0 to 570.4 ± 123.5, a similar increase can be seen in the
SNRCN , increasing from 198.3 ± 14.6 to 368.0 ± 53.5, though this did not benefit
the CNR (93.5 ± 6.7 and 93.7 ± 14.6 for the unprocessed and processed images,
respectively). Within the HCPYA database, increases in the SNRs and CNRs of
both the T1w and T2w images are also apparent. Taken together, this suggests that
optimizing post-acquisition processing methods can provide additional increases
in image quality that are not trivial.

While the analysis presented here quantifies an important aspect of the
databases, they are not the only factor to take into account when selecting imaging
data for further research purposes. At an overview, our results indicate a strong
advocation for the MPI-CBS and 250 databases, owing to their SNR and CNR far
above the rest. However, there are also other factors to consider, for example,
sample size, age-range and the number of contrasts included are just some of a
long list of criteria many research questions need to consider. As such, the small
sample size, limited age-range and limited contrasts make the MPI-CBS and 250
databases less attractive for many lines of research.

Although the relationships of SNR and voxel dimensions with scan time pre-
sented here are obvious and reflect basic MRI physics, it is nonetheless interesting
to see the efficiency of separate MRI protocols. These relationships are particularly
informing when aspects of image quality largely deviate from linearity. Optimized
MR sequences or contrasts that allow for high spatial resolution or high SNRs with
short scan times offer preferable performance. These comparisons also indicate
further favourability for 7T imaging, with most of the resultant 7T database images
residing on the efficient side of the linear trends displayed with scan time.

We present here age-related differences across four MRI contrasts; T1w, T2w,
qT1, and qT2*. Our SNRCN analyses suggest a consistent age-related decline in all
image types. Age-related changes in relaxation values in the human brain have
been long-known (Bottomley et al., 1984). There is also evidence that T2* values
reflect iron concentration in neural tissues (Brooks et al., 1989). During healthy
aging, iron-deposition appears to increase in some brain structures (e.g., parts of
the basal ganglia) (Aquino et al., 2009; Haacke et al., 2005; Hallgren and Sourander,
1958; Morris et al., 1992). The decline of qT2* measures in the CN therefore likely
reflects this increase in iron deposition. The lowering in effective T2 found here
is also in line with previous work (Keuken et al., 2017; Siemonsen et al., 2008).
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Volume loss in this region is another known process observed in the healthy aging
brain (Di et al., 2014; Raz et al., 2003), which would be accompanied by a declining
proton density, lowering the signal derived from T1 recovery and T2 relaxation.
Taken together, these declines in signal would suggest an age-related structural
change of the caudate nuclei. A more complicated picture is painted for the SNRCC

measurements. A SNR decline in the CC was found in T1w, qT1 and qT2* images,
though this decline is not as apparent as in the CN. Post mortem histological
analyses of white matter regions have shown that the myelination of nerve fibres
decreases with age (Marner and Pakkenberg, 2003). This process of demyelination
is associated with an increase in SNR in qT1 and T1w images (Keuken et al., 2017),
in opposition to what was found here. It should be noted, however, that there
appears to be an increase in image noise in the elderly population (measured
as the standard deviation of the 27 voxels measured per image). This increase
in noise was not accompanied by a decrease in mean signal of the region, and
therefore likely drives the small decline in SNR found. For the other relationships,
this increase in noise as a function of age is also apparent. However, since this
increase is also accompanied by a decrease in mean signal, it most likely reflects
an underlying structural change. We note that age-related structural changes are
heterogeneous across different regions of the brain. The processes underlying
these changes are similarly heterogeneous and a combination of a multitude of
factors, including changes in the small vessels supplying the regions, regional
brain atrophy, loss of myelination and impaired white matter (Bullitt et al., 2010;
Marner and Pakkenberg, 2003; Pagani et al., 2008; Resnick et al., 2003). These
changes, in addition to increased subject motion during scanning could all impact
the increase level of noise found in the elderly population. It has been suggested
that head motion increases as a function of age (Savalia et al., 2017), although
some findings have suggested a more non-linear relationship between the two
(Pardoe et al., 2016). Even subtle forms of motion artefacts have been shown to
affect interpretability of imaging analysis results (e.g., cortical thickness estimates;
(Fjell et al., 2009)). Image noise introduced through head motion also lowers SNR
estimates and degrades image quality (Havsteen et al., 2017). This highlights the
need for motion correction in structural MRI. Due to our limited snapshot of the
data available, we can only show results that hint at these intricate relationships.

For the CNR measurements, there consistently appears to be an age-related
decline across the adult lifespan, as indicated by the analysis of all four contrasts.
Such CNR differences are also found when comparing adult and infant brains
(Mewes et al., 2006). This decrease in CNR over the adult lifespan is a by-product
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of the physical changes to the contrasted regions (CC and CN). The observed
decrease in SNR in these two regions leads to this decrease in CNR. The analyses
of age-related differences presented here illustrates just one of the many interesting
ways these open-access databases can be used for in the future.

It should be stressed that there are a variety of methods to calculate both the
SNR and CNR of structural MR images, note that most of these methods are not
applicable to all situations. For SNR estimation, there are two other prominent
methods used in the field. The first involves measuring the SNR of the region of
interest (ROI) within the brain and dividing it by the SNR of the background of the
image outside of the brain. The second involves measuring only the mean signal
of the ROI inside the brain and dividing it by the standard deviation of a region
outside of the brain. A commonality in both of these methods is that they assume
that measuring an area outside of the brain captures only the noise induced by
the MR scanner itself. One reason we opted for the method used here is that due
to inhomogeneities in the magnetic field of each scanner and differences in the
spatial distribution of noise (Pruessmann et al., 1999; Sodickson and Manning,
1997), the area of the background image chosen for the measurement of noise
could differ significantly between sites and sequences. Of course, our method
does not remove the problem of bias, but as this bias is the same across all of
the images measured here, we believe the comparison is fair. Regardless of the
method used for the measurement of the SNR, the most important requirement
for an objective comparison is that the method used is consistent across all data.
To signify that this method was indeed reliable within the databases, we ran the
validation study on the separate T1w images. The reproducibility of the estimates
that we took indicate that the methods holds as a consistent measurement of SNR.

As spatial resolution increases, sensitivity to both voluntary or involuntary mo-
tion and physiological noise will also increase, and therefore continue to be a ceil-
ing on image quality at all field strengths. Methods to overcome such movement
artefacts include both retrospective and prospective motion correction (Haacke
and Patrick, 1986; Lee et al., 1996). Both approaches have displayed their ability to
increase image quality at 3T and 7T, providing a way around subject motion at
high resolution (Federau and Gallichan, 2016; Gallichan et al., 2016; Stucht et al.,
2015; Zaitsev et al., 2017). Removing this confound completely while scanning
healthy individuals is infeasible, but post mortem MRI can benefit from the lack of
movement artefacts, allowing for scan times inconceivable in live subjects. These
scan times can facilitate the visualization of a much larger number of smaller brain
structures (Oguz et al., 2013). For the purpose of creating probabilistic atlases of

44



Quantity and quality

the human brain, such a technique when used in concurrence with histological
methods can provide greater detail than in vivo MRI alone (Forstmann et al., 2017).

We acknowledge that for many of the databases discussed here, we have only
analyzed a snapshot of the data and have not taken advantage of all of the data we
have access to. This limitation was necessary to keep our analysis level feasible,
as the range in sizes of these databases make using all participants problematic.
For the future, we would hope that a standardized SNR protocol will become
a feature that all new databases will use and present with their data. Ideally,
this would include manually segmented masks of the same anatomical areas,
from unprocessed imaged in their native spaces. We also hope that open-access
databases continue to become the norm across the scientific field.

2.5 Conclusion

The current study provides a quantitative comparison between some of the most
fruitful open-access neuroimaging databases available, which can aid researchers
in selecting which databases to use. The results presented here give an indication of
the large variation in image quality provided by these databases. The estimations
(SNR and CNR), as well as the number of contracts provided by each database
(as these give visual information to specific tissue types), can aid in the selection
process. The benefit of large-scale imaging databases for creating general maps
of cortical organization and providing both phenotypic and genetic comparisons
across populations is clear. However, large-scale databases often come at the cost
of lower image resolution due to the financial implications of using large sample
sizes, ultra-high field MRI and extensive scan times. In particular for the human
subcortex, image resolution is critical and standard structural 3T MRI data does
not provide the required resolution and SNR for small nuclei. The higher quality
of 7T databases provides a clear advantage, but high cost and limited access are
still preventing the collection of larger cohorts. Each database presented here has
assisted an important neuroscientific movement towards open-access imaging
data. With the number of subjects ranging from one to over 1500 and the number
of sessions from one to 18, the objectives and characteristics of these databases
are diverse. We hope that our current efforts will help researchers to choose the
appropriate database for their research question and highlight their usefulness to
the scientific field in the study of normative human brain structure.
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Charting human subcortical morphometry across the adult
lifespan with in vivo 7 T MRI
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Abstract

The human subcortex comprises hundreds of unique structures. Subcortical
functioning is crucial for behavior, and disrupted function is observed in common
neurodegenerative diseases. Despite their importance, human subcortical
structures continue to be difficult to study in vivo. Here we provide a detailed
account of 17 prominent subcortical structures and ventricles, describing their
approximate iron and myelin contents, morphometry, and their age-related
changes across the normal adult lifespan. The results provide compelling insights
into the heterogeneity and intricate age-related alterations of these structures.
They also show that the locations of many structures shift across the lifespan,
which is of direct relevance for the use of standard magnetic resonance imaging
atlases. The results further our understanding of subcortical morphometry and
neuroimaging properties, and of normal aging processes which ultimately can
improve our understanding of neurodegeneration.
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3.1 Introduction

The human subcortex comprises hundreds of unique structures (Alkemade et al.,
2013; Forstmann et al., 2017) which receive interest from a broad range of neu-
roscientific disciplines (e.g. Lozano et al., 2019; Raznahan et al., 2014; Shepherd,
2013; Tian et al., 2020). Subcortical functioning is crucial for normal behavior
and physiology including decision making (Ding and Gold, 2013), reward pro-
cessing (O’Doherty et al., 2004; Schultz et al., 1997), and motor behavior (Mink,
1996). Disruption of subcortical structures is observed in common neurodegenera-
tive diseases including Parkinson’s (Hirsch et al., 1988) and Alzheimer’s disease
(Ehrenberg et al., 2017; German et al., 1987). Subcortical structures are also of
interest as (potential) deep brain stimulation (DBS) targets in Parkinson’s disease
(Fasano and Lozano, 2015; Limousin et al., 1995) and other disorders such as major
depression and epilepsy (Lozano et al., 2019).

Research into the subcortex depends on the imaging of individual subcortical
structures. However, visualizing subcortical structures using in vivo methods such
as magnetic resonance imaging (MRI) is challenging due to their close spatial
proximity, biophysical properties, and morphometry (Keuken et al., 2018). As
a consequence, our understanding of the subcortex remains limited, and lags
behind our understanding of the cortex. Quantitative ultra-high field 7 Tesla
MRI provides a method to overcome the challenges associated with visualizing
subcortical structures (Bazin et al., 2020; Keuken et al., 2018), which we use here to
provide a cross-sectional account of the subcortex across the adult lifespan.

The biophysical properties that determine the appearance of brain structures on
MR images include the iron and myelin contents, which influence the main sources
of contrast in MRI: the longitudinal and effective transverse relaxation rates, and
the local susceptibility to magnetic fields. Furthermore, iron and myelin are highly
biologically relevant: Myelin plays an important role in plasticity and development
(e.g. Fields, 2015; Hill et al., 2018; Turner, 2019), and iron is crucial for normal tissue
functioning (e.g. Zecca et al., 2004). Iron deposition (Daugherty and Raz, 2013;
Hallgren and Sourander, 1958; Raz and Rodrigue, 2006; Ward et al., 2014; Zecca
et al., 2004) and decreased myelination (Raz and Rodrigue, 2006; Shen et al., 2008)
are part of normal aging processes, but excessive iron accumulation and myelin
degradation are prominent in diseases including Parkinson’s and Alzheimer’s
disease (e.g. Mancini et al., 2020; Zecca et al., 2004). A description of normal
age-related changes in iron and myelin content can therefore provide a frame of
reference to contrast pathological iron accumulation and myelin degradation, and
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to refine methods for the early detection of pathological alterations using MRI
measures as biomarkers.

An additional factor determining the appearance of the human subcortex is
the small size of the individual structures. Prominent subcortical structures such
as the subthalamic nucleus are as small as a few millimeters thick, limiting the
number of voxels they encompass on MR images commonly used in research and
in the clinic. Moreover, voxels at the border of structures likely include tissue from
adjacent structures (partial voluming), which can lead to biases especially when
voxel sizes are large relative to the structure (Mulder et al., 2019). Structure size
should therefore be taken into account when imaging the subcortex. An important
additional consideration here is the development of atrophy with increasing age,
which is reflected in reduced volume of gray matter structures (Cherubini et al.,
2009; Courchesne et al., 2000; Herting et al., 2018; Lemaitre et al., 2012; Raz,
2004; Raz and Rodrigue, 2006; Walhovd et al., 2005) and which results in more
cerebrospinal fluid (CSF) and larger ventricles (Good et al., 2001; Greenberg et al.,
2008; Stafford et al., 1988; Walhovd et al., 2005). In addition to volume changes,
atrophy can result in a shift in the location of structures (Keuken et al., 2017;
Keuken et al., 2013; Kitajima et al., 2008).

These factors combined hamper visualization of the subcortex when using
conventional MRI techniques. Furthermore, the age-related alterations in these
factors alter the appearance of the subcortex with increasing age. In this study,
we provide a detailed account of 17 subcortical structures and ventricles using
data from 105 healthy participants across the adult lifespan obtained with in vivo
methods tailored for studying the human subcortex (Alkemade et al., 2020a). For
practical reasons, and without intending to make any claims on how a subcortical
structure should be defined, we define subcortical as any anatomical structure
located inferior to the corpus callosum.

Compared to previous studies, which often focus on a select set of regions
and/or MRI or morphometry measures at a time, we simultaneously study a
wider range of structures and measures. These include structures and measures
that have not been studied before in the context of aging. The structures under
investigation include gray matter regions, white matter tracts, and the ventricles.
The inclusion of a variety of structures allows us to study across-region similarities
and differences in aging effects. Similarly, the large set of quantitative MRI (qMRI)
contrasts and morphometry measures allows us to explore aging as a multidimen-
sional process. As such, we provide a wide picture of subcortical aging across
metrics and regions.
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Furthermore, we improve upon previous methods by using qMRI acquired
at 7 Tesla (T) with 0.7 mm isotropic resolution, and employ the MASSP method
(Bazin et al., 2020) to obtain automated delineations with an accuracy that approxi-
mates the gold standard of manual delineations (Alkemade et al., 2021; Bazin et al.,
2020). Tullo et al. (2019) have shown that the choice of delineation method can
influence which age-related change models provide best fits to empirical data, il-
lustrating the importance of high-quality delineations in aging studies. Additional
methodological improvements include the development of a subcortical thickness
estimation method, which provides a thickness estimate analogous to cortical
thickness metrics; as well as the development of iron and myelin approximation
methods. Combined, these methods allow us to interpret our results in terms of the
hypothesized biological processes that occur during aging: myelin degradation,
iron accumulation, and atrophy (changes in size, shape, and location).

3.2 Methods
3.2.1 Participants

We used the Amsterdam ultra-high field adult lifespan database (AHEAD; Alke-
made et al., 2020a), which consists of multimodal MRI data from 105 healthy
participants. Inclusion criteria were age 18–80 years and self-reported health at
the time of inclusion. Exclusion criteria were any factors that could potentially
interfere with MRI scanning, including MRI incompatibility (e.g., pacemakers),
pregnancy, and self-reported claustrophobia. At least six males and females were
included in each age decade to ensure full coverage of the adult lifespan. All
participants gave written informed consent prior to the onset of data collection.
The local ethics board approved the study.

3.2.2 MRI scanning

Images were acquired at the Spinoza Centre for Neuroimaging in Amsterdam,
the Netherlands, using a Philips Achieva 7 T MRI scanner with a 32-channel
phased-array coil. Routine quality checks of the quantitative maps appearance
were performed previously (Alkemade et al., 2020a) and all subjects from the
database were included for analysis. T1-weighted, T2* contrasts were obtained
using a MP2RAGEME (multi-echo magnetization-prepared rapid gradient echo)
sequence (Caan et al., 2019). The MP2RAGEME is an extension of the MP2RAGE
sequence (Marques et al., 2010) and consists of two rapid gradient echo (GRE1,2)
images that are acquired in the sagittal plane after a 180 degrees inversion pulse

51



Chapter 3

and excitation pulses with inversion times TI1,2 = [670 ms, 3675.4 ms]. A multi-
echo readout was added to the second inversion at four echo times (TE1= 3 ms,
TE2,1-4 = 3, 11.5, 19, 28.5 ms). Other scan parameters include flip angles FA1,2 =
[4, 4] degrees; TRGRE1,2 = [6.2 ms, 31 ms]; bandwidth = 404.9 MHz; TRMP2RAGE =
6778 ms; acceleration factor SENSE PA = 2; FOV = 205 ⇥ 205 ⇥ 164 mm; acquired
voxel size = 0.7 ⇥ 0.7 ⇥ 0.7 mm; acquisition matrix was 292 x 290; reconstructed
voxel size = 0.64 ⇥ 0.64 ⇥ 0.7 mm; turbo factor (TFE) = 150 resulting in 176 shots;
Total acquisition time = 19.53 min. No B1 field correction was performed; instead,
the B1 field was optimized for subcortex during data acquisition.

3.2.3 Quantitative MRI modeling and parcellation

The MP2RAGEME consists of two interleaved MPRAGEs with different inversions
and four echoes in the second inversion. Based on these images, we estimated
quantitative MR parameters of R1, R2* and QSM as follows. First, we took advan-
tage of the redundancy in the MP2RAGEME sequence to perform a PCA-based
denoising with LCPCA (Bazin et al., 2019). R1 maps were then computed using
the standard look-up table approach of Marques et al. (2010) to recover T1 values
from the measured signals. R2*-maps were computed by least-squares fitting of
the exponential signal decay over the four echoes of the second inversion. QSM
images were obtained from the phase maps of the second, third, and fourth echoes
of the second inversion with TGV-QSM (Langkammer et al., 2015). Skull stripping,
required for QSM, was performed on the second inversion, first echo magnitude
image (Bazin et al., 2014).

The anatomical regions of interest were defined with the MASSP automated
algorithm (Bazin et al., 2020) on the basis of the R1, R2* and QSM image maps.
The algorithm combines location, shape, and quantitative MRI priors to define 17
subcortical anatomical regions and ventricles, listed in Table 3.2. Separate masks
for left and right hemisphere were obtained except for 3V, 4V, and fx.

For this study, the MASSP algorithm was trained on renormalized versions of
the quantitative contrasts using a fuzzy C-means clustering of intensities, and
linearly interpolating between cluster centroids (Pham and Bazin, 2009). The
renormalized contrasts were thus less sensitive to the intensity variations induced
by aging. Additionally, the registration to the MASSP atlas was performed in two
successive steps, producing more accurate alignment of the anatomical priors with
each subject. This second step was particularly important to compensate for the
large variability of ventricular size and shape in the study cohort. The algorithm
itself was unchanged, and we re-validated the accuracy of the method against
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manual delineations as in (Bazin et al., 2020). Improvements were noticeable for
more variable structures such as the ventricles, fornix, and claustrum, as well as
some of the more challenging smaller structures, see Figure B.1.

3.2.4 Iron and myelin approximation

Iron and myelin are main determinants of MR image contrast (Stüber et al., 2014).
Several lines of research indicate that the concentrations of iron and myelin are
approximately linearly related to qMRI metrics R1, R2* and QSM (Hametner et al.,
2018; Mangeat et al., 2015; Marques et al., 2017; Metere and Möller, 2018; Rooney
et al., 2007; Stüber et al., 2014). Whereas many studies make inferences on iron and
myelin contents based on a single MRI modality (e.g., Daugherty and Raz, 2013;
Khattar et al., 2021), we use the multimodal quantitative nature of our data to
estimate the relation between multiple modalities and iron and myelin. Assuming
a linear relationship between iron and myelin on the one hand, and qMRI on the
other, linear models can be fit and used to predict iron and myelin contents based
on qMRI values (Metere and Möller, 2018):

Iron = Intercept + wi,qsm ⇤ QSM + wi,R2⇤ ⇤ R2⇤ + wi,R1 ⇤ R1

Myelin = Intercept + wm,qsm ⇤ QSM + wm,R2⇤ ⇤ R2⇤ + wm,R1 ⇤ R1
(3.1)

Estimating the parameters w of these models requires population-average es-
timates of iron and myelin content for a variety of regions of interest that cover
the range of R1, R2*, and QSM values observed across the brain. Following the
approach by Metere and Möller (2018), we obtained these values from the litera-
ture (Hallgren and Sourander, 1958; Metere and Möller, 2018; Randall, 1938), and
supplemented those values using observations in post mortem tissue (detailed be-
low). For iron estimates, Hallgren and Sourander (1958) provided quantifications
across a number of subcortical and cortical regions, which, combined with the
corresponding qMRI values obtained using our own MRI data, allowed for stable
estimators of the weights in Equation 3.1. An iron concentration of 0.061 in the
ventricles was assumed (following Metere and Möller, 2018, who based this value
on LeVine et al., 1998).

As a reference for myelin concentrations, we used work by Randall (1938),
which provides lipid concentrations for the corona radiata, frontal and parietal
white matter, brain stem, thalamus, caudate, and frontal and parietal gray matter.
Following Metere and Möller (2018), we assumed that these lipid concentrations
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reflect myelin concentrations. Unfortunately, the reported regions do not include
iron-rich nuclei, which limits the range of (especially) R2* and QSM values with
known corresponding lipid concentrations. Using a limited number of regions
of interest to estimate the myelin model could limit the generalizability of the
estimated parameters to structures with lower R2* and/or QSM values, which
would bias myelin estimates in iron-rich structures like some basal ganglia nodes
(e.g., based on using only Randall’s (1938) lipid concentrations, Metere and Möller
(2018) obtained negative myelin concentrations in various basal ganglia structures).

To supplement the literature-based myelin concentrations, we approximated
the myelin contents of other regions of interest using a post mortem specimen.
Specifically, we used specimen #7 from Alkemade et al. (2020b), which was a
75 year old female, non-demented control. At the time the current experiments
were performed, this was the only specimen fully processed. Here, we made the
following assumptions:

1. The optic density of tissue in our silver stains is approximately linearly
related to the concentration of myelin in that tissue in our regions of interest
(see Figure 3.1). Here, we confirmed that silver stains were not saturated
even in the white matter regions;

2. The myelin concentrations in the post mortem specimen do not show gross
abnormalities. We found no indications that our post mortem specimen
showed major abnormalities in myelin properties. We confirmed that the
donor had no clinical record of neurodegenerative disease, a diagnosis that
was confirmed post mortem by a board-certified neuropathologist;

3. The myelin concentrations in white matter reported by Randall (1938) are in
the same range of the myelin concentration in the internal capsule. Similarly,
the myelin concentrations in parietal cortex are in the same range of the
concentrations in insular cortex.

Seven 200 µm coronal sections of a single specimen were stained according to
the method described by Bielschowsky (for details, see Alkemade et al., 2020b).
Sections included the caudate nucleus, thalamus, internal capsule, and insular
cortex, in which we estimated the median intensity of the lightness of the stain (the
optic density). Randall (1938) reports quantified lipid concentrations of the caudate
nucleus and thalamus, which can be directly compared to the stain intensities, as
well as of parietal gray and white matter. The caudate nucleus, thalamus, and
parietal gray and white matter (as reported by Randall (1938)) were not visible in
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the same histological section, and we therefore used insular cortex as a reference
region for gray matter, and the internal capsule as a reference region for white
matter. For each section separately, we then created a linear calibration curve,
which allowed us to determine lipid concentrations based on the stain intensity
(Figure 3.1) for putamen, globus pallidus, subthalamic nucleus, red nucleus, and
substantia nigra.

For the region of which population-averaged iron and myelin contents were
known, we estimated the qMRI values using the MRI data. Median qMRI values
were calculated using the MASSP masks for subcortical regions, and a MGDM
and CRUISE parcellation was used to obtain individual masks for brain stem,
cerebellum, and cortex (Bazin et al., 2014). We included only participants of 30
years and older to match the ages of the specimens on which the iron and myelin
estimates are based. For brain regions for which we had estimated the myelin
content using our post mortem specimen, we only included AHEAD subjects of 70
years and older (17 participants total) to approximately match ages of the MRI
data and the specimen. Tables B.1 and B.2 list the iron and myelin concentrations,
respectively, and their corresponding qMRI values, that were used to estimate the
parameters in Equations 3.1.

To test whether all qMRI metrics were required as predictors to accurately
predict iron and myelin content, we fitted linear models with all eight possi-
ble combinations of R1, R2*, and QSM. Models were fitted using ordinary least
squares (OLS). For each model, we estimated the Akaike information criterion
(AIC; Akaike, 1973) to identify the model that is expected to have the highest
predictive performance, and used the model with lowest AIC values (AIC and
BIC values agreed on the winning model). We used the AIC here instead of the
BIC as the AIC is expected to select models with the highest cross-validated pre-
dictive performance, whereas the BIC is expected to select the data-generating
model (Wagenmakers and Farrell, 2004). The model comparisons, including the
parameterized winning models, can be found in Table 3.1.

Comparisons of the explained variance (R2) of the individual models show that,
when relying on single qMRI metrics, R2* explained most variance in iron (91.6%),
followed by QSM (81.1%). Combining R2* and QSM increased the explained
variance to 94.6%, which implies R2* and QSM largely (but not only) explain the
same variance in iron. Nonetheless, the increase in variance explained acquired
by adding QSM to the R2* model was sufficient to warrant the additional model
complexity, as evidenced by the lower AIC and BIC values.
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Figure 3.1: Procedure of estimating myelin contents using a post mortem specimen. In each section
(seven in total), the stain intensities corresponding to CAU, THA, insular cortex (CTX) and the
internal capsule (ic/wm) were estimated. For each section individually, a calibration curve was
estimated to map stain intensity to myelin values (solid blue lines and equations). Within the
range of interest, the relation between stain intensity and myelin content could be approximated
with a linear trend. Then, within each section separately, the intensity values for putamen
(PUT), GP, STN, RN, and SN were estimated (colored dashed lines; note that not all sections
contained all structures), and the corresponding myelin values were calculated. Per region, the
median estimate (across sections) was used as a final estimate. Boxplots in the right panel show
across-section variability in estimated myelin contents and suggest agreement across sections.
The center line in each box marks the median, box limits are the across-section interquartile
range, and whiskers are at 1.5 times the interquartile range below and above the box limits. ROI
= Region of interest.
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Table 3.1: Model comparisons for the iron (top) and myelin (bottom) approximation models. Bold
face indicates the winning models, which have the lowest AIC and BIC values.

Parameterized model R2 AIC BIC
Ir

on

y = 8.27718 0.0 117.2952 118.1285
y = -6.83576 + 0.33962⇥R2* 0.9161 77.1614 78.8278
y = -11.25376 + 29.28218⇥R1 0.4811 108.1415 109.8079
y = -3.45436 -9.2427⇥R1 + 0.40217⇥R2* 0.933 75.3461 77.8458
y = 4.68168 + 274.40993⇥QSM 0.8107 90.9972 92.6637
y = -3.82834 + 0.2431⇥R2* + 98.27947⇥QSM 0.9461 71.6371 74.1368
y = -2.59147 + 11.83574⇥R1 + 227.0019⇥QSM 0.8651 87.2357 89.7354
y = -2.41386 -5.22683⇥R1 + 0.29445⇥R2* + 82.01402⇥QSM 0.9507 72.1302 75.463

M
ye

lin

y = 9.34013 0.0 78.8674 79.4324
y = 4.41227 + 0.09621⇥R2* 0.2178 77.6741 78.804
y = -6.25936 + 21.5651⇥R1 0.7746 61.4997 62.6296
y = -7.98965 + 31.87483⇥R1 -0.11182⇥R2* 0.8918 53.963 55.6579
y = 8.80294 + 25.38923⇥QSM 0.0211 80.5908 81.7207
y = -0.24058 + 0.25117⇥R2* -155.23593⇥QSM 0.4399 75.3327 77.0276
y = -7.7523 + 25.33129⇥R1 -58.19931⇥QSM 0.8616 57.1586 58.8535
y = -7.97876 + 32.10295⇥R1 -0.11662⇥R2* + 3.32451⇥QSM 0.8918 55.9549 58.2147

As expected, R1 explained most variance in myelin (77.4%), while R2* explained
only limited variance in myelin (21.78%, only marginally better than an intercept-
only model). However, the combination of R1 and R2* explained 89.2% of variance,
suggesting R1 and R2* do not largely explain the same variance in myelin, but
each explain unique proportions. AIC and BIC values preferred the model that
included both R1 and R2* as predictors.

Figure 3.2 visualizes quality of fit of the winning models. Note that the model
weights cannot directly be compared to the weights from Stüber et al. (2014), which
were obtained using formalin fixated post mortem tissue. Formalin fixation can
change qMRI values (Birkl et al., 2016; Langkammer et al., 2012; Schmierer et al.,
2008; Shepherd et al., 2009; Tovi and Ericsson, 1992). A second complicating factor
is that qMRI values can vary between MRI sites (Mancini et al., 2020), suggesting
the need to re-estimate model weights when using qMRI obtained at a different
site.

Using these simplified biophysical models, we calculated whole-brain iron and
myelin maps, and obtained participant-specific myelin and iron values for all
structures using the MASSP masks. Iron and myelin maps of a representative
participant are shown in Figure 3.3. To confirm our models are able to reproduce
the between-region variability in iron and myelin that has been reported in the
literature, we compared the myelin and iron predictions to the concentrations in
the literature (Figure 3.4). We also compared the myelin predictions to the myelin
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Figure 3.2: Quality of fit of the myelin (left) and iron (right) model. The planes are given by the
winning models in Table 3.1. Red dots illustrate data points, gray dots are the model predictions
for these data points.

concentrations estimated based on the post mortem tissue. These comparisons
suggest reasonable correspondence between literature-derived and qMRI-derived
iron and myelin concentrations for most regions, but not all. Regions with rel-
atively large discrepancies include the brainstem, which might arise due to the
fact that the iron literature reported concentrations in the medulla oblongata,
whereas the qMRI data delineation included the entire brainstem. Similarly, the
iron literature provided separate estimates for the putamen and caudate, whereas
the qMRI delineations included the striatum as a single region, and as such the
qMRI-derived iron concentrations cannot recover any differences between the
putamen and caudate. Finally, the qMRI-derived myelin estimates are higher than
the post mortem estimates, which might be related to neuromelanin, as this results
in a lower intensity in the post mortem tissue, potentially resulting in a negative
bias in the corresponding myelin estimate.

It is important to emphasize that the iron and myelin estimates we report are
based on simplifying assumptions with regard to the linearity of the relation
between qMRI and iron/myelin, and on the iron/myelin concentrations on which
the biophysical models are fitted (detailed above). As such, the iron and myelin
estimates should be not be interpreted as absolute measurements, but rather as
approximations that serve to guide the interpretations of qMRI values in terms of
the most likely underlying biological contributors to those values.

3.2.5 Thickness estimation

We calculated local structure thickness based on a medial skeleton representation:
for each structure, we estimated the skeleton as the ridge equidistant to the struc-
ture boundaries. Thickness was defined as twice the distance between the skeleton
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Figure 3.3: Example of myelin (left) and iron map (right) of a representative participant. The top
row shows the R1, R2*, and QSM maps, which were linearly combined into myelin and iron maps
(middle and bottom row) using the winning models detailed in Table 3.1. Note the hyperintense
appearance of iron rich structures such as the rounded shape of the red nucleus.

Figure 3.4: Comparison between qMRI-derived iron (left) and myelin (right) values in our data
and values reported in the literature. For myelin, we also compare the qMRI-derived estimates
to the estimates in the post mortem tissue. Error bars indicate standard deviations. No error bars
are present for the bars representing post mortem tissue, as these come from a single brain.
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and the closest boundary, using the method described in Bazin et al. (2020). In
other words, local thickness measures at every location inside the structure the
distance between the two closest boundaries of that structure, extending the con-
cept of cortical thickness to more complex shapes. Contrary to volume, thickness
can be determined at the position of each voxel within a structure, thus providing
local information. A similar thickness measure was also used in Ho et al. (2020) to
detect subtle shape differences.

3.2.6 Center of mass

For all structures, we calculated the center of masses in Cartesian x, y, and z coor-
dinates per participant after an affine transformation to group space by aligning
each subject to the MNI template with ANTs (Avants et al., 2008) using mutual
information. The affine transformation was necessary to define a common space in
which to compare structure location between subjects. It was preferred over a rigid
or a non-linear transformation in order to correct for inter-individual differences
in intracranial volume and neurocranium shape, while retaining inter-individual
variability in anatomy relative to the neurocranium.

3.2.7 Age-related change modeling

We describe the age-related changes in iron concentration, myelin content, volume,
and thickness, as well as in the center of mass in x, y and z coordinates. For iron,
myelin and thickness, we report both a median reflecting the central tendency
and interquartile range reflecting structure homogeneity. For thickness, the in-
terquartile range reflects the within-structure variability of thickness, quantifying
the regularity of the shape. We also analyzed the R1, R2*, and QSM values, which
can be found in the online app (https://subcortex.eu/app).

Exploratory modeling of the between-hemisphere differences per structure
suggested no between-hemisphere difference in aging patterns for most structures.
Therefore, we subsequently assumed that the age-related changes in each structure
were the same in both hemispheres, to reduce the total number of models fitted. We
collapsed across hemispheres by taking the mean value across both hemispheres
per structure and participant.

Prior to fitting the aging models, we excluded outliers based on their Maha-
lanobis distance (cut-off 10.827, corresponding to p < 0.001, 0.69% of all data
points). Per ROI and dependent variable, we then fit the following set of 24 poten-
tial models, with all possible combinations of the following predictors: A linear
influence of age, a quadratic influence of age, sex, an interaction between age
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and sex, and an interaction between a quadratic influence of age and sex. We
excluded models with both interaction terms, as this would imply implausibly
large between-sex differences in aging patterns.

Models were fit with OLS as implemented in statsmodels (Seabold and Perktold,
2010) for the Python programming language. Models were compared with the
Bayesian Information Criterion (BIC; Schwarz, 1978), which quantifies the quality
of fit penalized for model complexity. Lower BIC values indicate more parsimo-
nious trade-offs between quality of fit and model complexity and are preferred.
Based on the winning model, we removed influential data points using Cook’s
distance (cut-off 0.2, 0.18% of all data points; we used a more conservative cut-off
than 4/n, which is sometimes recommended [Rawlings et al., 1998]). We then
refitted all models on the data excluding the influential data points, and performed
a new model comparison.

Using the winning age-related change models, we quantified the total age-
related change. Figure 5 illustrates the procedure to estimate this value, which
involves taking the first derivative of the winning model (which quantifies the
mean amount of change on every year), then taking the absolute (which quantifies
the amount of change, irrespective of the direction of change), and then integrating
over the age range of 19 to 75 years old. By integrating over the absolute derivative,
age-related decreases and increases in a metric do not cancel out, but both count
as ’change’ and sum up across the range of the adult lifespan. To retain the mean
direction of change in the metric, we took the negative of the total age-related
change when the model’s predicted value at 75 was lower than at 19.

The age range under consideration was limited to 75 because our data contains
only one data point older than 75. Extrapolation of fitted regression models
to beyond the range of the original data can lead to biases (e.g., Hahn, 1977),
and since our data only contains one data point older than 75, we deemed it
more conservative to restrict our inferences to the maximum of 75 years old. For
winning models that included sex (or interactions between age and sex) as a
predictor, the total age-related changes were calculated for both sexes separately
and then averaged. Finally, we divided the total age-related change by the model’s
predicted value at 19 years old, in order to quantify the total age-related change
relative to a baseline value.

3.2.8 Confidence intervals and standard errors

Confidence intervals in Figure 3.6 were obtained using a bootstrapping procedure
with 10,000 iterations. We iteratively sampled 105 random observations with
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Figure 3.5: Procedure of estimating total amount of change across the adult lifespan. The left
column shows two example models: One inverted U-shape (median myelin change in the internal
capsule), and one linear increase (median iron change in the amygdala). Formally, change across
ages is given by the first derivative (middle column). To collapse over the direction of change
(increase or decrease), we took the absolute of the derivative (right column). The sum of this
absolute derivative (illustrated by the gray area under the curve) represents the total amount of
change in a region. As a final step (not illustrated), the sum of the absolute derivative is divided
by the model prediction at 19 years old, which represents the total amount of change relative to
the baseline value.

replacement from the data, based on which we estimated the median, and took
the 2.5th and 97.5th percentile of the 10,000 medians as the 95% confidence interval.
The standard errors in Figure B.4 were obtained using a similar bootstrapping
procedure, in which winning model specifications were iteratively fit on 10,000
random samples (drawn with replacement) from the data. Per iteration, the total
age-related change metrics were estimated. The standard deviation of the total age-
related change metrics across iterations was used as an estimator of the standard
error. For winning models that do not include age as a predictor variable, the
standard error is 0 since the total age-related change metric is 0 in each iteration.

3.3 Results

One hundred and five healthy volunteers were scanned using an ultra-high field
7 Tesla MRI scanner as part of the openly available Amsterdam ultra-high field
adult lifespan database project (AHEAD; Alkemade et al., 2020a). A quantitative,
multi-modal MP2RAGE-ME sequence (Caan et al., 2019) with 0.7 mm isotropic
resolution was used to simultaneously estimate R1, R2* and quantified suscepti-
bility mapping (QSM) values in a single scanning sequence. For each participant,
17 subcortical structures and ventricles (see Table 3.2) were delineated using the
Multi-contrast Anatomical Subcortical Structures Parcellation method (MASSP;
Bazin et al., 2020).
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Table 3.2: Regions of interest. Midline structures were parcellated as a single structure, all
other structures (indicated by bold-faced letters) were parcellated separately per hemisphere.
Abbreviations in italics indicate white matter structures.

AMG: Amygdala SN: Substantia nigra
CL: Claustrum STN: Subthalamic nucleus
fx: Fornix STR: Striatum
GPe: Globus Pallidus Externa THA: Thalamus
GPi: Globus Pallidus Interna VTA: Ventral Tegmental Area
ic: Internal Capsule LV: Lateral ventricle
PAG: Periaqueductal gray 3V: Third ventricle
PPN: Pedunculopontine nucleus 4V: Fourth ventricle
RN: Red nucleus

We analyzed each structure by first estimating the iron and myelin concentra-
tions, using simplified biophysical models that translate the measured R1, R2*, and
QSM values into the most likely corresponding iron and myelin concentrations
(see Methods). Note that these concentrations are approximations and do not
reflect measured myelin and iron concentrations (see Limitations section). We ob-
tained both the (within-structure) median of iron and myelin distributions, and the
interquartile range (IQR) which reflects image noise and tissue (in)homogeneity.
Second, we analyzed the structure morphometry by estimating volume and thick-
ness. Thickness is defined as twice the distance between the boundary and the
internal skeleton of the structure. As a local measure (contrary to volume), it is
defined for every voxel in a structure, and it depends on the structure’s shape.
Also for thickness, we determined both the median and IQR, the latter reflect-
ing the regularity of the structure’s shape: Regularly shaped structures (e.g., the
red nucleus) have a similar thickness at each voxel’s location, resulting in lower
between-voxel IQRs compared to complex shaped structures (e.g., the striatum).
Third, we determined the location (center of mass in 3 Cartesian coordinates) of
each structure. Center of mass was determined after applying an affine transforma-
tion to a group template, to account for inter-individual differences in intracranial
volume and shape, while retaining inter-individual variability in distances relative
to the neurocranium.

The distributions of iron, myelin, and volumes revealed a large between-
structure heterogeneity in the human subcortex (Figure 3.6). The globus pallidus
externa and interna, red nucleus, substantia nigra, and subthalamic nucleus
displayed the highest iron concentrations (both median and IQR), corroborating
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earlier reports (Haacke et al., 2005; Hallgren and Sourander, 1958; Ramos et al.,
2014). In line with expectations, low iron concentrations in combination with high
myelin concentrations were observed in the white matter structures under study:
the internal capsule and the fornix. The estimated myelin concentrations of the
subthalamic nucleus, red nucleus, and ventral tegmental area were relatively high,
which causes the limited visibility of these structures on T1-weighted images
(Keuken et al., 2018). For comparison, the estimated myelin concentrations of
the striatum and amygdala were substantially lower, resulting in intensities
comparable to cortical gray matter on T1-weighted images.

The within-structure IQR of iron scaled with the median estimates. This was the
case across participants in all individual structures except for the left claustrum
and left periaqueductal gray (lowest significant Pearson’s correlation coefficient =
0.206 in the right claustrum; highest correlation coefficient = 0.876 in left striatum;
all significant after correction for the false discovery rate at q < 0.05), as well as for
the median and IQR of iron across structures (r = 0.827, t(26) = 7.35, p < 0.001).

Across subjects, the IQR of myelin decreased with increasing median myelin
concentrations for all regions except the left pedunculopontine nucleus, right
substantia nigra, left amygdala, both claustrums, right internal capsule, and fornix
(significant correlation coefficients varied between -0.2183 for the left VTA and
-0.58 for the right periaqueductal gray; all significant after correction for the false
discovery rate at q < 0.05). Across regions, however, no correlation was observed
between the median and IQR of myelin. The fornix had a particularly high IQR
of myelin. This could potentially have been caused by partial voluming with the
lateral ventricles, decreasing the myelin estimates at voxels near the boundary of
the fornix.

3.3.1 Maturation effects

We next studied the age-related alterations in iron, myelin, and morphometry
across the adult lifespan. We fit a set of 24 regression model specifications (with, as
predictor variables, linear and/or quadratic effects of age, plus sex and potential
interactions between sex and age) for all structures and measures individually. As
we had no a priori hypothesis on lateralization, we collapsed across hemispheres to
reduce the total number of fitted models. The model specification that showed the
most parsimonious trade-off between quality of fit and model complexity (as quan-
tified using the Bayesian information criterion; Schwarz, 1978) was considered the
winning model and used for further analyses. To help navigate the winning mod-
els of each structure and measure (including R1, R2*, and QSM values), we devel-
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Figure 3.6: Across-participant distributions of within-structure median and IQR of iron and
myelin, and volumes per structure. The center line in each box marks the median, box limits are
the across-participant IQR, and whiskers are at 1.5 times the IQR below and above the box limits.
Error bars drawn inside boxes indicate 95% confidence intervals around the median, obtained
by bootstrapping with 10,000 iterations. Colors indicate hemisphere (LH = left hemisphere,
RH = right hemisphere, Single = structures that are continuous across the hemispheres), mg/100
g = mg iron per 100 g fresh tissue, mm = millimeter.

oped an online interactive app, which is accessible at https://subcortex.eu/app
(see also Figure B.3). Next to in the online app, all winning models (including the
parameterization) can also be found in Figures B.5—B.11.

We observed (median) iron accumulation in all structures except for the claus-
trum, globus pallidus interna, and periaqueductal gray, which instead showed
stable iron concentrations (Figure 3.7). With the exception of the globus pallidus
interna, the iron-rich basal ganglia appeared to accumulate most iron during aging
in absolute terms. The IQRs increased with age for all structures, revealing a global
decrease in structure homogeneity. Since this decrease in homogeneity was also
present in the structures where no median iron increase was observed, it likely
partially reflects an increase in image noise. However, the increases in IQR were
higher in the structures that accumulate most iron (correlation between median
and IQR iron increases across structure r = 0.598, t(12) = 2.584, p = 0.024, two-
sided), suggesting that the (median) iron accumulation for these structures was not
homogeneously distributed within the structure. This decrease in homogeneity
was particularly strong in striatum and the red nucleus.

In line with expectations, we observed a general myelin degradation (see Figure
3.8), except for in the amygdala, claustrum, and substantia nigra, where no alter-
ations in myelin concentrations were detected. The largest (absolute) reduction of
myelin was present in the fornix; the other white matter structure, internal capsule,
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Figure 3.7: Age-related changes in iron content. The meshes are based on the young (18–30 years
old, mean 23; left) and elderly (70–80 years old, mean 73; right) participants after a non-linear
transformation to MNI2009b space. Mesh colors illustrate the model predictions for the median
and IQR of iron distributions at 23 (left) and 73 (right) years old, corresponding to the mean ages
of the participant groups on which the meshes were based. Colors in the top-left meshes of all
structures indicate model predictions at 23 years old. In case the winning model did not include
sex as a predictor variable, the model predictions are shown in black lines; otherwise, green and
orange lines are used for the predictions for women and men, respectively. The total amount of
change in median (Med.) and IQR are shown in each scatterplot. The ventricles are assumed to
have no iron and are excluded from this graph.
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showed a smaller decrease in myelin. The globus pallidus interna, periaqueductal
gray, pedunculopontine nucleus, substantia nigra, and ventral tegmental area
showed slightly higher median myelin concentrations in females than in males.
Like in the case of iron, the increases in IQR of myelin reflected a trend of de-
creasing structure homogeneity across structures. Since these IQR increases were
present for structures that did not show any change in median myelin content,
they likely partially reflect increases in image noise.

Next, we analyzed the effects of atrophy (Figure 3.9). The lateral and third ven-
tricle showed a substantial volume increase with age, which can at least partially
be explained by the filling of the intracranial space created by atrophied brain
tissue. Contrary to expectations, the volume of the fourth ventricle decreased
rather than increased. Inspection of the mesh of the fourth ventricle in the elderly
suggests this may be caused by shrinkage of the superior part. Volume decreases
were also found in the striatum, thalamus, amygdala, ventral tegmental area,
periaqueductal gray, pedunculopontine nucleus, and red nucleus, likely reflecting
atrophy. The internal capsule, fornix and globus pallidus interna showed a small
increase in volume with age, suggesting white matter swelling, which could be
caused by neuroinflammatory processes.

Atrophy of specific subparts of a structure, as a result of increased vulnerability
to atrophy in that part, could result in shape changes (Ho et al., 2020; Raznahan
et al., 2014). Shape changes can be detected by analyzing changes the median
and IQR of thickness, which depend on the structure’s shape. Specifically, when
changes in the median thickness and volume point in the same direction (as is
the case in, e.g., the lateral ventricles, striatum), this suggests overall thickening
or thinning of a structure. Instead, increases in median thickness combined with
decreases in volume can indicate atrophy in a thinner part of the structure, as this
would decrease the amount of voxels with relatively low thickness, increasing the
median thickness. This specific effect appeared to be present in the ventral tegmen-
tal area, pedunculopontine nucleus and periaqueductal gray. Furthermore, in-
creases in IQR indicate decreases in structure regularity, which was observed in the
globus pallidus interna, substantia nigra, periaqueductal gray, pedunculopontine
nucleus, and red nucleus.

A third potential effect of atrophy is a change in the location of individual
structures relative to the neurocranium (Keuken et al., 2017; Keuken et al., 2013;
Kitajima et al., 2008): As the brain atrophies, the resulting physical space is filled
with CSF, leading to location shifts of other brain structures. For the majority of
brain structures under investigation, we observed location shifts in the lateral
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Figure 3.8: Age-related changes in myelin content. The meshes are based on the young (18–30
years old, mean 23; left) and elderly (70–80 years old, mean 73; right) participants after a non-
linear transformation to MNI2009b space. Mesh colors illustrate the model predictions for the
median and IQR of myelin distributions at 23 (left) and 73 (right) years old, corresponding to
the mean ages of the participant groups on which the meshes were based. Colors in the top-left
meshes of all structures indicate model predictions at 23 years old. In case the winning model did
not include sex as a predictor variable, the model predictions are shown in black lines; otherwise,
green and orange lines are used for the predictions for women and men, respectively. The total
amount of change in median (Med.) and IQR are shown in each scatterplot. The ventricles are
assumed to have no myelin and are excluded from this graph.
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Figure 3.9: Age-related changes in structure morphometry. The meshes are based on the young
(18–30 years old, mean 23; left) and elderly (70–80 years old, mean 73; right) participants after a
non-linear transformation to MNI2009b space. The lines in each scatterplot visualize the winning
model predictions. In case the winning model did not include sex as a predictor variable, the
model predictions are shown in black lines; otherwise, green and orange lines are used for the
predictions for women and men, respectively. The total amount of change in median (Med.) and
IQR of thickness and volume (Vol.) are shown in each scatterplot.
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Figure 3.10: Age-related changes in structure location, posterior view. Meshes were based on the
young (18–30 years old) participants after non-linearly transforming to MNI2009b space. Arrows
depict the model predictions for the location shift, starting at the center of mass of each structure
in MNI2009b space, and pointing to the predicted center of mass of the structure at 75 years old.
The left graph shows all 17 subcortical structures and ventricles under investigation, the right
graph excludes the lateral ventricles, internal capsule, and thalamus, to improve the visibility of
the smaller structures.

and inferior direction (Figure 3.10). The center of mass of the lateral and third
ventricles and the claustrum also shifted in the posterior direction; the fornix and
striatum shifted in anterior direction.

Combined, we observed age-related changes in all measures: iron, myelin,
volume, thickness, and location. These effects were in line with the expected
effects of iron accumulation, myelin degradation, and atrophy, but there appeared
to be strong between-region variability in the degree to which regions change with
age, which we focus on in the next section.

3.3.2 Between-structure variability in maturation

Because the winning models of age-related change trajectories included either
linear or quadratic influences of age, the parameter estimates of the different
models cannot be directly compared. To provide a quantity that summarizes the
amount of age-related change (irrespective of the underlying model specification),
we calculated the sum of the absolute yearly changes between 19 and 75 years old,
relative to the model’s predicted value at 19 years old to take into account baseline
differences (see Figure 3.5).

For each structure, we then plotted the total age-related change per metric as
a radar chart in Figure 3.11, which defines a ‘fingerprint‘ of aging per structure.
Formal comparison of these fingerprints by means of a correlation matrix would
require more than 7 metrics to achieve sufficient statistical power and assess

70



Charting human subcortical morphometry

significance. Here, we are restricted to qualitative comparisons. These fingerprints
suggest strong interregion variability in aging patterns, also within groups of
structures that could be grouped on anatomical grounds such as the basal ganglia.
However, similarities can be found between various individual structures. For
example, the red nucleus and striatum both show strong increases in the IQR of
iron and myelin, combined with increases in median iron and decreases in median
myelin. Additionally, the aging patterns in the thalamus and ventral tegmental
area suggest similarities, with median and IQR iron increases of comparable sizes,
and relative stability on the other metrics. Median and IQR increases in iron
combined with IQR increases in myelin were found in the substantia nigra and
subthalamic nucleus, with the other measures remaining relatively stable. Finally,
some structures including the periaqueductal gray, pedunculopontine nucleus,
and internal capsule appear to remain relatively stable across all metrics.

3.4 Discussion

Interest in the human subcortex is rapidly growing in cognitive and clinical neu-
roscience due to the relevance of subcortical regions as (potential) targets for
DBS and their role in cognition. Here, we studied 17 subcortical structures and
ventricles in terms of their iron and myelin contents, their sizes, as well as the
intricate age-related alterations. Our results highlight the heterogeneity in the
subcortex, presenting the strong variability in iron, myelin, and morphometry
that exists between structures. Furthermore, our results indicate global effects of
iron accumulation, myelin degradation, and atrophy in the subcortex across the
normal adult lifespan, and strong variability in the extent to which the different
structures are affected by each type of age-related change.

To better navigate the rich landscape of subcortical aging, we also share our
results in an online app (Figure B.3, https://subcortex.eu/app) that can be
used to create interactive and intuitive 3D visualizations of the human subcortex
across the lifespan and across modalities. It allows for inspection and reuse of the
underlying models and data of each individual structure. The app was designed
in a flexible way, so that it can be augmented with more structures and contrasts
to expand it to a comprehensive chart of the human subcortex. The underlying
data can readily be downloaded for further analyses.

Understanding the aging processes in the subcortex is paramount in research
and in clinical practice. While iron accumulation and myelin degradation are part
of normal aging processes, increased accumulation and myelin degradation are
part of multiple neurodegenerative disorders including Parkinson’s and Hunting-

71

https://subcortex.eu/app


Chapter 3

M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 ●

●

●

●

●

●

●

−0.5

0

0.5

1

AMG
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

● ●

●

●

−0.5

0

0.5

1

CL
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●

●

●

●

−0.5

0

0.5

1

GPe

M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●

●

●

●

−0.5

0

0.5

1

GPi
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●
●

●

●

−0.5

0

0.5

1

PAG
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●
●

●

●

−0.5

0

0.5

1

PPN

M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●

●

●

●

−0.5
0
0.5
1

RN
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●

●

●

●

−0.5

0

0.5

1

SN
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 ●

●

●

●

●

●

●

−0.5

0

0.5

1

STN

M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 ●

●

●

●

●

●

●

−0.5
0
0.5
1

STR
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●
●

●

●

−0.5

0

0.5

1

THA
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 ●

●

●

●
●

●

●

−0.5

0

0.5

1

VTA

M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●
●

●

●

−0.5

0

0.5

1

fx
M Iron

M
Myelin      

IQR
Iron

Myelin IQR Volume

M
Thickn.

IQR
      Thickn.

 
 

 
  

 

 

 

 

 

  

 

 
●

●

●

●
●

●

●

−0.5

0

0.5

1

ic

Figure 3.11: Radar charts quantifying the total amount of age-related change (relative to the
baseline value at 19 years old) along the seven metrics (radial axes), for each region separately.
Each axis runs from -0.5 to 1, which correspond to total amounts of change equal to 50% in
negative direction and 100% in positive direction, respectively. The axes for the red nucleus and
striatum run to 1.25 to accommodate the large amounts of change in the IQR of iron in these
regions. Solid lines indicate 0 (no change) and 1. Red dots indicate the measured amount of
change.
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ton’s disease (Andersen et al., 2014; Collingwood and Davidson, 2014; Ward et al.,
2014; Zecca et al., 2004). An accurate description of the distributions of iron and
myelin across the lifespan in health provides a frame of reference against which
pathological iron accumulation and myelin degradation can be contrasted, and
can prove useful in the development of biomarkers for disease (Guan et al., 2017;
Mancini et al., 2020; Martin et al., 2008; Schenck and Zimmerman, 2004; Zecca
et al., 2004).

Iron and myelin are also the two main determinants of MRI contrast. Many
subcortical structures, such as the subthalamic nucleus, cannot readily be dis-
tinguished on conventional T1-weighted MRI images due to a lack of contrast
with nearby regions. Because of the limited visibility of subcortical structures on
conventional MR images, a common practice is to use atlases to locate individual
structures (Devlin and Poldrack, 2007; Evans et al., 2012). Stereotactic atlases
based on post mortem tissue are often used for planning DBS surgery, and proba-
bilistic MRI atlases are conventionally used in cognitive neuroscientific research.
Subcortical MRI atlases are growing in numbers (Keuken et al., 2014; Lau et al.,
2020; Pauli et al., 2018; Trutti et al., 2021; Ye et al., 2021) due to improvements
in MRI resolution and contrasts. However, MRI atlases are typically developed
using anatomical images obtained from young participants, which can cause bi-
ases when such atlases are subsequently used to infer anatomical information in
older participants or patient populations (Evans et al., 2012; Keuken et al., 2013;
Samanez-Larkin and D’Esposito, 2008). In cognitive neuroscience research, it is
common to apply spatial normalization procedures to a group space to account for
individual differences in anatomy, but consistent deviations from the group tem-
plate are likely to introduce normalization errors (Samanez-Larkin and D’Esposito,
2008). These biases can result from iron accumulation and myelin degradation
(which change the contrast of images) and from atrophy (which change the size
and the location of structures). Our results can help understand the biases that
could occur when conventional MRI atlases, based on young participants, are
used to analyze data from older participants, and call for the development of
age-specific MRI atlases of the subcortex to remedy these biases.

The between-region variation in iron contents has important consequences
for blood oxygenation level dependent (BOLD) functional MRI. Because iron
decreases T2* relaxation times, on which contrast-to-noise ratios (CNR) of BOLD-
fMRI sequences depend, BOLD CNR varies substantially between regions. For
instance, within young participants, the CNR in the red nucleus is expected to
be 74% lower than in the amygdala, when using an echo time of 42 ms at 7 T
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(corresponding to the T2* of the amygdala in young participants), solely due to
the differences in T2* (see supplement for details). Age-related alterations in iron
contents can have similar effects. For instance, the CNR in the red nucleus at 50
years old is 32% lower than at 19 years old when using an echo time of 18 ms at 7 T
(corresponding to the T2* of the red nucleus at 19 years old). Thus, iron deposition
can confound fMRI studies into age-related changes of BOLD responses.

However, substantial gains in CNR can be achieved by optimizing the echo
time to meet the specific requirements of studying a structure of interest (see also
Hollander et al., 2017; Miletić et al., 2020). For instance, when targeting the red
nucleus, decreasing the echo time to 18 ms (corresponding to the T2* of the red
nucleus at 19 years old) is expected to lead to a 62% higher CNR compared to an
echo time of 42 ms (which would be optimal to target the amygdala). Similarly, the
echo time can be adjusted to partially mitigate the effects of age-related changes in
T2*: By decreasing the echo time from 18 ms to 13 ms (corresponding to the T2* of
the red nucleus at 50 years old), a modest 6% increase in CNR can be expected.
Using our online app as a resource for participant-specific predictions of R1, R2*,
and QSM values, we envision the use of MRI protocols tailored to the structure of
interest and the participant’s age and sex.

3.4.1 Comparison with previous aging studies

The majority of previous subcortical aging studies focused on volume metrics.
Direct comparison with other studies is hindered by differences in anatomical
region definitions (e.g., striatum versus putamen and caudate, entire pallidum
versus internal and external segments), delineation methods, modeling approaches
(parametric versus non-parametric), and differences in age ranges (see also Coupé
et al., 2017; Walhovd et al., 2016), although our results fall in line with previous
reports.

The thalamus and striatum are studied most often and have consistently been
reported to decrease in volume across the adult lifespan. Studies differ, however,
in the shape of the reported trajectories: Some suggest quadratic or cubic volume
decreases in both thalamus (Coupé et al., 2017; Dima et al., 2021; Potvin et al., 2016;
Tullo et al., 2019; Wang et al., 2019) and striatum (Coupé et al., 2017; Potvin et al.,
2016; Tullo et al., 2019), others show linearity or suggest approximate linearity
(Fjell et al., 2013; Sullivan et al., 2004; Walhovd et al., 2011; Wang et al., 2019). In
concordance with the latter reports, our data suggest linear volume decreases,
although we cannot rule out that small non-linear trends are present that we could
not detect with our sample size.
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Other subcortical structures previously studied include the globus pallidus, for
which linear and quadratic volume decreases have been reported (Coupé et al.,
2017; Fjell et al., 2013; Goodro et al., 2012; Tullo et al., 2019; Walhovd et al., 2011;
Wang et al., 2019), although not consistently: Other studies have reported stable
volumes across age (Inano et al., 2013; Jernigan et al., 2001). Our data suggested a
stable volume in the external part of the globus pallidus, but we found a volume
increase in the internal part (c.f. Keuken et al., 2017, who found volume increases
in the external part). In the amygdala, we found quadratic volume decreases.
Recent large-sample studies (Coupé et al., 2017; Dima et al., 2021) suggest that the
amygdala volume remains stable between approximately 20–70 years old, and
then declines. This implies that the maturation pattern strongly depends on the
age range studied, which could explain the discrepancies in results from earlier
studies that reported stable volumes (Jernigan et al., 2001), and linear (Narvacan
et al., 2017; Walhovd et al., 2011; Wang et al., 2019) and quadratic (Goodro et al.,
2012; Inano et al., 2013) volume decreases.

Volume increases in the lateral ventricles have been shown to be quadratic
previously (Inano et al., 2013; Walhovd et al., 2005; Walhovd et al., 2011; see also
Goodro et al., 2012). While our thickness estimates indeed suggest quadratic
increases, the volume estimates instead indicate linear increases. Earlier reports
on volume changes in the fourth ventricle are not consistent: Some studies have
reported volume increases (Walhovd et al., 2005) or stable volumes in the fourth
ventricle (Inano et al., 2013; Keuken et al., 2017; Walhovd et al., 2011). Here, we
found a volume decrease in the fourth ventricle.

While our method of estimating iron contents has not been used to study aging
before, our results can be compared to studies focusing on (q)MRI markers of iron.
Daugherty and Raz (2013) provided a meta-analysis of early (q)MRI studies on iron
accumulation in the caudate, red nucleus, and substantia nigra, and concluded
that iron accumulates in these regions. The underlying studies used R2(*), the
field-dependent increase in R2, and phase information based on susceptibility
weighted imaging (SWI) as markers for iron. Later studies employing QSM and
T2*/R2* are generally consistent with these findings (Acosta-Cabronero et al., 2016;
Betts et al., 2016; Callaghan et al., 2014; Keuken et al., 2017; Li et al., 2021; Zhang
et al., 2018; but see Khattar et al., 2021, who report no change in these areas). In
line with these reports, our results suggest iron accumulation in these regions,
specifically in inverted U-shaped trajectories.

Studies on iron accumulation in other subcortical regions have varying and
sometimes conflicting conclusions. Daugherty and Raz (2013) also suggested iron
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accumulation in the globus pallidus. Our data found linear iron accumulation
in the external, but no change in the internal segment. In contrast, Keuken et al.
(2017) reported no change in T2* or QSM for the external segment (potentially
indicating stable iron concentrations). They did report a T2* increase (which
could indicate iron decreases) and stable QSM in the internal segment. Khattar
et al. (2021) showed no change the SWI phase in the (entire) globus pallidus, in
line with the findings from Li et al. (2021) who studied QSM as an iron marker.
Our results suggest linear iron accumulation in the amygdala as well. Based on
QSM, Acosta-Cabronero et al. (2016) instead reported stable iron contents in the
amygdala (similar to Zhang et al. (2018), although the difference in age ranges
under study hinders direct comparison). Finally, we also found inverted U-shaped
iron trajectories in the thalamus. Khattar et al. (2021) found decreasing SWI phase
in thalamus (suggesting iron increases), but Li et al. (2021) showed decreasing
QSM values in the thalamus which instead suggests iron decreases.

Most earlier studies focusing on age-related change in myelin used the ratio of
T1w/T2w as a myelin marker, which is controversial (Arshad et al., 2016; Glasser
and Van Essen, 2011; Grydeland et al., 2019; Uddin et al., 2018; Uddin et al.,
2019). Inverted U-shape trajectories of T1w/T2w have been reported in both
cortex (Grydeland et al., 2019), and in the striatum and pallidum (Tullo et al.,
2019). Our data instead suggest quadratic but monotonic decreases in myelination
in these areas. Other microstructure markers include DTI-derived metrics such
as fractional anisotropy and mean diffusivity, which suggested linear declines
in microstructure of the thalamus, putamen, and caudate (Cherubini et al., 2009;
Wang et al., 2010). Similarly, Callaghan et al. (2014) used magnetization transfer
as a microstructure marker in the thalamus and caudate, which also suggested
linear declines. Our results for the white matter tracts showed demyelination in
fornix and the internal capsule, the pattern of which is qualitatively in line with
earlier studies (Lebel et al., 2012; Madden et al., 2012) that analyzed DTI measures
in white matter tracts.

More recently, myelin-water fraction (MWF; MacKay et al., 1994) estimation
is gaining popularity as a proxy for myelin. Arshad et al. (2016) demonstrated
that MWF in the internal capsule shows an inverted U-shaped age-related change
trajectory, which shows qualitative similarity to our results in the internal capsule.
Finally, Khattar et al. (2021) used MWF to analyze subcortical nuclei, which sug-
gested inverted U-shaped aging trajectories across many subcortical regions, even
for those where our results suggested stable myelin contents or monotonically
decreasing trends.
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3.4.2 Limitations

The present study has several limitations. A first limitation is the estimation
of iron and myelin, which was done using simplified biophysical models that
translate qMRI contrast values into the most likely underlying iron and myelin
concentrations. The basic assumption underlying these models is that qMRI
values are linearly related to iron and myelin concentrations. This is supported by
previous studies (Mangeat et al., 2015; Marques et al., 2017; Metere and Möller,
2018; Rooney et al., 2007; Stüber et al., 2014).

Stüber et al. (2014) fit the parameters of their linear models using the iron,
myelin concentrations and qMRI values in a single post mortem specimen, across
many voxels. Metere and Möller (2018) generalized this approach by fitting the
linear models on population-average myelin, iron concentrations and qMRI values,
across many regions. The literature on the population-average iron and myelin
concentrations, however, is sparse, especially in the case of myelin. This sparsity
required us to estimate myelin contents of several subcortical regions using a
post mortem specimen, which in turn required additional simplifying assumptions.
The lack of a well-established, quantified ‘ground truth‘ of myelin concentrations
across the human brain is a limitation not only for the accuracy of the estimated
calibration curve, but also prevents us from validating our results directly against
it.

Our myelin estimates can be validated indirectly by qualitative comparison
with observations from earlier reports that rely on other methods. While there is
currently no exact qMRI marker of myelin, the aforementioned MWF estimation
(MacKay et al., 1994) has been shown to be a relatively accurate method (Mancini
et al., 2020). Khattar et al. (2021) reported MWF estimates in subcortical regions,
and consistent with our results, their data suggest that myelin concentrations
in subcortical gray matter regions may exceed myelin concentrations of cortical
gray matter. Similarly, comparison with histology suggests that optical densities
of myelin stains in deep gray matter regions such as the thalamus and globus
pallidus are higher than cortical gray matter (e.g., Hametner et al., 2018).

Despite their limitations, our estimates of iron and myelin —compared to qMRI
values— offers a distinct advantage in terms of interpretation. Multiple previous
studies (reviewed above) into age-related changes aim to infer changes in iron
concentrations by relying on a single (q)MRI metric such R2* or QSM, but R2* (Li
et al., 2009) and QSM (e.g., Hametner et al., 2018; Liu et al., 2015) have been shown
to also correlate with myelin concentrations (see also Daugherty and Raz, 2015).
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Similarly, there currently exists no perfect method to estimate myelin contents in
vivo (Mancini et al., 2020), and while R1 covaries with myelin, studies suggest
that it also covaries with iron (Ogg and Steen, 1998; Rooney et al., 2007; Stüber
et al., 2014; but see Steen et al., 2000). As such, disentangling the contributions
of iron and myelin to qMRI contrasts requires simultaneously consideration of
multiple qMRI contrasts at once. Future studies that quantify iron and myelin
concentrations across the brain, for example using systematic chemical assays or
advanced microscopy (e.g. Brammerloh et al., 2021) on post mortem materials, can
provide key information to validate and further improve upon our modelsFinally,
qMRI measurements are also prone to biases, for instance B1 inhomogeneities in
R1 mapping (Haast et al., 2016), which are recalibrated when transforming qMRI
values to myelin and iron estimates.

A second limitation is that the number of structures included in these studies
is still limited. We intend to expand the number of structures in our future
efforts. The hippocampus is of particular interest in the context of aging due to
its well-known atrophy associated with cognitive decline and neurodegenerative
disease (Bettio et al., 2017). However, given its cortical origin, the hippo-campus
has not been prioritized in this research and at present cannot be delineated by
the MASSP algorithm. Since gold standard manual delineations have not been
performed on the present data, we are currently unable to confirm the reliability
of other algorithms for hippocampal delineation on our specific data. We intend
to incorporate the hippocampus in MASSP in a future study.

Third, we cannot exclude age-related changes in parcellation accuracy. This is
a general problem with aging studies, as parcellation accuracy tends to decrease
with age due to decreased contrast between structures, even when structures are
delineated manually. We relied on the MASSP algorithm (Bazin et al., 2020) to
parcellate the 17 subcortical regions and ventricles in each participant individually.
The performance of MASSP, like manual delineations, varies per structure, and
depends on structure size and contrast (Alkemade et al., 2021). Compared to
manual delineations, the performance of MASSP also tends to decrease with
age. Fortunately, the impact of age-related biases in parcellation was shown to
be limited for the quantitative MRI measures (Bazin et al., 2020) on which the
iron and myelin estimates are based, suggesting that the age-related changes in
myelin and iron are unlikely to be caused by age-related differences in parcellation
performance. On the other hand, size estimates (volume and to a lesser extent
thickness) are more susceptible to the age-related changes in parcellation quality.
Here, we used an improved version of MASSP to mitigate these effects and could

78



Charting human subcortical morphometry

observe increased delineation accuracy for ventricles, fornix, claustrum, GPi and
VTA (see Figure B.2). However, a replication of the age dependency study of
Bazin et al. (2020) using the improved version of MASSP did not show much
improvement in the consistency of thickness and volume estimate in smaller
structures, where we cannot exclude age-related decreases in parcellation accuracy.
While other automated parcellation algorithms incorporate certain structures of
interest (such as the hippocampus, see above), we are not aware of any algorithm
that can parcellate the same breadth of subcortical regions on qMRI data as MASSP.
Future developments of MASSP or other algorithms might improve parcellation
accuracy and thereby improve the robustness of models of age-related changes.

Finally, we are limited to descriptions of the age-related changes that result from
iron accumulation, myelin degradation, and atrophy. While our results indicate a
between-region heterogeneity in the age-related changes, they do not explain why
certain regions appear to change more than others with increasing age. Similarly,
we did not study the specific relation between qMRI metrics and morphometry
(Lorio et al., 2016; Tardif et al., 2017; Weiskopf et al., 2015).

3.4.3 Conclusions

Our results extend previous studies into aging patterns of the subcortex, which
focus on a smaller number of typically large subcortical areas, often based on MRI
with lower field strengths (Aquino et al., 2009; Cherubini et al., 2009; Daugherty
and Raz, 2013; Daugherty and Raz, 2016; Fjell et al., 2013; Greenberg et al., 2008;
Herting et al., 2018; Keuken et al., 2017; Khattar et al., 2021; Li et al., 2014; Raz, 2004;
Raz et al., 2005; Raz and Rodrigue, 2006; Raznahan et al., 2014; Walhovd et al., 2005;
Wang et al., 2019). Experiments using very large numbers of participants detected
complex nonlinear age-related changes in some subcortical structures (Coupé
et al., 2017; Dima et al., 2021; Fjell et al., 2013). Our study had a more modest
sample size, which did not allow to evaluate complex non-linear trends. On the
other hand, by leveraging an open database of ultra-high field 7 T quantitative
MRI, we could provide a first view on many structures and variables at once,
which may be refined as more 7 T quantitative MRI data sets become available. As
such, our study provides a richer and more extensible description of subcortical
composition, morphometry and aging.
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Cortical and subcortical contributions to interference resolution
and inhibition – an fMRI ALE meta-analysis

This chapter is published as:
S. J. S. Isherwood, M. C. Keuken, P.-L. Bazin, and B. U. Forstmann (2021b). Cortical
and subcortical contributions to interference resolution and inhibition - An fMRI
ALE meta-analysis. Neuroscience and biobehavioral reviews 129, pp. 245–260. DOI:
10.1016/J.NEUBIOREV.2021.07.021.
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Abstract

Interacting with our environment requires the selection of appropriate responses
and the inhibition of others. Such effortful inhibition is achieved by a number
of interference resolution and global inhibition processes. This meta-analysis
including 57 studies and 73 contrasts revisits the overlap and differences in brain
areas supporting interference resolution and global inhibition in cortical and
subcortical brain areas. Activation likelihood estimation was used to discern
the brain regions subserving each type of cognitive control. Individual contrast
analysis revealed a common activation of the bilateral insula and supplementary
motor areas. Subtraction analyses demonstrated the voxel-wise differences in
recruitment in a number of areas including the precuneus in the interference
tasks and the frontal pole and dorsal striatum in the inhibition tasks. Our results
display a surprising lack of subcortical involvement within these types of cognitive
control, a finding that is likely to reflect a systematic gap in the field of functional
neuroimaging.
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4.1 Introduction

Cognitive control as a whole describes an array of processes required for optimal
and adjustable human behaviour and decision-making (Aron, 2007; Botvinick
et al., 2001). Under this umbrella of cognitive control are two associated but inher-
ently distinct mechanisms that aid in supporting the ability of goal-directed be-
haviour; interference resolution and global inhibition (Nigg, 2000). These concepts
have drawn the attention of psychologists since the late 19th century (Bergstrom,
1894), where the terms were initially used interchangeably but due to clinical
psychology and neuroscience results it became apparent that these are two related
but functionally diverse phenomena (Nee et al., 2007). In general, global inhibition
is defined as the global dampening of an already initiated or no longer relevant
action (Aron, 2007). Interference resolution is considered a more selective inhibi-
tion process, where task-irrelevant stimuli and goal-irrelevant responses must be
dampened but relevant responses maintained (Nigg, 2000). In the past, both these
types of inhibition processes have been largely studied independently. Global
inhibition has commonly been investigated using the Stop-Signal task (Logan and
Cowan, 1984) or the Go/No-Go task (Donders, 1969), which overlap in terms of
global inhibition but differ with respect to the underlying proactive or reactive
mechanism. Interference resolution has been largely studied through the use of
the Eriksen-Flanker task (Eriksen and Eriksen, 1974), Stroop task (Stroop, 1935),
Simon task (Simon and Rudell, 1967) and multi-source interference task (Bush
et al., 2003).

Generally agreed upon theories of the biological architecture underlying these
types of cognitive control rest on the involvement of both the cortex and sub-
cortex (Albin et al., 1989; Aron et al., 2016; Nambu et al., 2002; Neumann et al.,
2018; Wiecki and Frank, 2013). It has long been hinted that a cortico-striatal loop
modulates the capacity of interference resolution (Mink, 1996; Utter and Basso,
2008), and there is evidence that the STN plays a key role in the net-inhibition of
inappropriate movements (Beauregard and Lévesque, 2006; Forstmann et al., 2012;
Frank, 2006; Keuken and Forstmann, 2015; Wessel et al., 2019). Recent studies have
found evidence that the fronto-striatal network supports the ability to selectively
inhibit such movements (Schmidt et al., 2018; Schmidt et al., 2020), in line with
theories suggesting that the basal ganglia modulate these cortical pathways to
some extent (Alexander et al., 1986; Mink, 1996; Utter and Basso, 2008). Another
source of evidence for the involvement of subcortical areas in interference reso-
lution and global inhibition comes from intracranial recordings studies. There
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is a sizable and growing body of literature showing the involvement of the STN
in stopping ongoing action as a result of surprising events as well as mediates
post-error slowing in subsequent trials e.g,(Alegre et al., 2013; Bastin et al., 2014;
Benis et al., 2014; Brittain et al., 2012; Cavanagh et al., 2014; Fischer et al., 2017;
Kelley et al., 2018; Kühn et al., 2004; Ray et al., 2012; Siegert et al., 2014; Wessel
et al., 2016a; Wessel et al., 2016b; Zavala et al., 2013; Zavala et al., 2014). Yet, time
and time again, these deeper regions are often underrepresented in fMRI studies
and as a result the meta-analytical evidence for subcortical involvement in inter-
ference resolution is limited e.g., (Chen et al., 2018; Nee et al., 2007). As previous
recognized, this appears to be an accidental by-product of imaging techniques and
accessibility to more sensitive hardware (Forstmann et al., 2016; Johansen-Berg,
2013; O’Callaghan et al., 2014). Studying the contribution of subcortical nuclei
with MRI is inherently more difficult than the cortex simply due their distance to
the head coils. Lower field strengths are further disadvantaged due to the lack
of penetration and therefore sensitivity here (Collins and Smith, 2001; Vaughan
et al., 2001). The picture is further complicated by the need for specific contrasts in
order to be able to accurately delineate some of these iron-rich nuclei such as the
STN and SN (Kerl et al., 2012; Keuken et al., 2017; Keuken et al., 2018; Shroff et al.,
2009). Due to the differences in iron content the subcortex also requires slightly
different fMRI acquisition parameters to optimize the BOLD contrast sensitivity
e.g., (Hollander et al., 2017; Miletić et al., 2020).

The goal of this meta-analysis is to investigate the overlap and differences
in cortical and subcortical contributions to recent fMRI studies of interference
resolution and global inhibition. A number of fMRI meta-analysis on the topic of
cognitive control have been conducted in the past e.g., (Cieslik et al., 2015; Criaud
and Boulinguez, 2013; Gavazzi et al., 2020; Guo et al., 2018; Huang et al., 2020;
Hung et al., 2018; Niendam et al., 2012; Rae et al., 2014; Song et al., 2017; Swick
et al., 2011; Xu et al., 2016; Zhang et al., 2017). However, as a number of these
meta-analysis either included a low number of studies (Eickhoff et al., 2016; Müller
et al., 2018), used a software version of gingerALE that was later shown to contain
a number of implementation errors (Eickhoff et al., 2017; Garrison et al., 2019), or
included studies from the early 90’s and early 00’s that used 1.5T MRI (Hollander
et al., 2017; Krasnow et al., 2003; van der Zwaag et al., 2009). As such it is perhaps
not surprising that the meta-analytical evidence for the subcortical involvement is
limited.

Here, we set out to compare activation patterns in the tasks used to tap into
these two subtypes of cognitive control, with a main focus on subcortical involve-
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ment. To that end we employed a fairly strict list of inclusion criteria to facilitate
the inclusion of studies for which it was a priori conceivable that they reported
subcortical activations with high anatomical precision. Accordingly, we only in-
cluded studies from the last decade, that employed a high spatial resolution fMRI
acquisition protocol on 3T or higher field-strength MRI with little smoothing. To
maximize the number of studies given these demanding criteria, we conducted a
comprehensive literature search for experiments investigating interference and
inhibition tasks and convolved the results using activation likelihood estimation
(ALE).

4.2 Materials and Methods
4.2.1 Comprehensive literature search

4.2.1.1 Paradigms included

We included six different paradigms in the meta-analysis that are thought to
tap into interference and inhibition mechanisms, namely the Eriksen Flanker,
Simon, Stroop, Multi-Source Interference, Go/No-Go and Stop-Signal tasks. The
selection of tasks was based on a number of previous meta-analysis focussing on
interference and inhibition (Hung et al., 2018; Li et al., 2017; Nee et al., 2007; Song
et al., 2017; Swick et al., 2011).

Interference tasks

Eriksen Flanker task: a paradigm in which participants are shown a central
target stimulus flanked by a number of adjacent distractors. The participants
are instructed to press a button associated with the target stimulus. A trial is
congruent if the distractors are identical to the central target stimulus, whereas
the trial is incongruent if the distractors differ from the target stimulus.

Simon task: a paradigm in which participants have to respond to a given
stimulus with a given button press, irrespective of the location of the stimulus.
The trial is congruent if the location of the stimulus is on the same side as the
correct response hand, whereas the trial is incongruent if the stimulus is on the
contralateral side of the correct response hand.

Stroop task: in the classic Stroop task participants have to read a word while
ignoring the font colour. The trial is congruent if the meaning of the word and the
font colour are identical, whereas the trial is incongruent if they differ. Since the
original paper in 1935 several variants such as the numerical and affective Stroop
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task have been developed. We chose not to discard any Stroop variants as we were
interested in general inhibition and interference processes.

Multi-source interference task: a paradigm in which different aspects of the
Stroop, Eriksen Flanker and Simon tasks are combined. Participants are shown
three different items and are instructed to indicate which item differs from the
other two by pressing a button. Depending on the relative font size, type of
distractor or location of the target relative to the response finger a trial is either
congruent or incongruent.

Inhibition tasks

Go/No-Go task: a paradigm in which participants have to respond to a frequent
go stimulus while withholding their response to an infrequent no-go stimulus.
Due to the frequent nature of the go stimuli, a prepotent response needs to be
suppressed during the no-go stimulus.

Stop-Signal task: a paradigm in which participants need to respond to a given
stimulus while having to inhibit their response when an infrequent stop signal is
subsequently presented.

4.2.1.2 Inclusion criteria
All of the articles found by the query search were read by two raters (SJSI and
MCK) and either kept or discarded based on our predetermined inclusion criteria:

1. the study was published in a peer-reviewed English language journal be-
tween the 1st of January 2010 and the 4th of May 2020 (date of the query),

2. the study employed fMRI in healthy adults; the results obtained from pa-
tients and children (17 years and younger) were excluded. When studies
with patients included a healthy control group, the data of these healthy con-
trols were included if the results were reported separately or if the authors
provided us with the necessary information upon request,

3. participants engaged in a Eriksen Flanker, go/no-go, multi-source interfer-
ence, Simon, stop-signal or Stroop task where the following contrasts were
reported or provided by the authors on request:

• Eriksen Flanker: Incongruent > Congruent

• Go/No-Go: no-go > go

• Multi-Source interference task: Incongruent > Congruent
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• Simon: Incompatible > neutral; Incompatible > Compatible

• Stop-signal task: successful stop > go

• Stroop: Incongruent > neutral; Incongruent > Congruent

For all contrasts, if there was an affective manipulation, we only included
the neutral or control trials.

4. the event related fMRI data was acquired at 3 Tesla (T) or above,

5. the fMRI images were acquired whole brain at a resolution of 3mm or lower,
where the voxel geometry was isotropic or near-isotropic (e.g. less than 10%
deviation along the three edges of the voxel. This means that a voxel size of
2.5x2x5x3.0 is excluded but 2.5x2.5x2.75 is included (Mulder et al., 2019). The
voxel size was determined without taking the interslice gap into account.

6. a GLM voxel-based approach was used to statistically analyse the fMRI data
while using a maximum Gaussian smoothing kernel of 8mm FWHM. This
maximum smoothing kernel is between 2-3 times the maximum size of the
voxel and is thought to be a reasonable trade-off between robust statistical
group level results and the reduction of anatomical specificity (Mikl et al.,
2008; Pajula and Tohka, 2014).

7. the whole-brain activations are reported as 3D coordinates in stereotactic
space of Talairach or the Montreal Neurological Institute (MNI),

8. single-subject reports and experiments where the between-group effects
relate to handedness, sex and genotype were excluded.

All relevant reviews and meta-analysis that were included in the above search
were identified based on their abstract and cross-referenced to identify other
potential empirical papers.

4.2.1.3 Search strategy
An exhaustive literature search was conducted using the PyMed and Neurosynth
python modules within Python. PyMed is a search tool use for querying the
PubMed database. The Neurosynth module queries the Neurosynth fMRI
database. The query date for both searches was 4th May 2020. The following
keyword terms were used to query the PubMed database using the Entrez
query tool from the Bio module in Python: "interference", "interference control",
"conflict", "conflict control", "cognitive control", "stroop", "simon", "flanker",
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"stop-signal", "stop signal", "stop task", "stop-signal reaction time", "stop signal
reaction time", "go/no go", "go no go", "go-no go", "go/nogo", "go/no-go",
"go-no-go", "selective inhibition", "global inhibition", "inhibition", "response
inhibition", "inhibitory control", "multi source interference task", "msit" and
"multi-source interference task". These keywords were coupled with further
search terms to limit our results to only fMRI studies: “fmri”, “functional mri”
and “functional magnetic resonance imaging”. Due to the co-occurrence search
strategy that PubMed uses; we used all combinations of these two search term
lists (81 in total) to ensure that we found as many potential articles as possible.
For Neurosynth, we queried the database using both their innate feature list and
also searching their abstracts using our custom keywords. Since Neurosynth only
archives fMRI studies, we only used the first list of terms given above to query the
database.

The PubMed query resulted in 26.391 unique abstracts, the Neurosynth query
in 1.832 unique abstracts. After removing abstracts that were published before
2010 and abstracts that were found through both database searches, a total of
19.598 unique abstracts were identified. Raters 1 and 2 (SJSI and MCK) read and
rated all unique abstracts, with an inter-rater reliability (IRR) score of 0.69, 18.526
articles were excluded based on this. The 410 abstracts that were not agreed upon
were rated again by both raters, with an IRR = 0.72, a further 261 abstracts were
excluded based on this. During the abstract rating, any review or meta-analysis
articles were kept for their references to be cross-referenced with the articles that
the raters had decided as being eligible for inclusion. 56 previous reviews or
meta-analyses were found, and each rater independently checked 28 each, with
476 unique references found within them (that were not already part of the initial
database search). Both raters then read and rated the abstracts of these articles,
with an IRR=1.00. Both raters agreed that none of these new abstracts met the
inclusion criteria for the study, and therefore were all excluded. This suggests that
most, if not all, relevant studies were found in the initial database search. The IRR
scores at the three different interrater stages all indicated substantial or higher
levels of agreement between the two raters (Landis and Koch, 1977). A factor
contributing to the lower IRR at the first stage (IRR = 0.69) was that one of the
raters included abstracts using the anti saccade task, whereas the other rater did
not. As this task was not part of our predetermined list of inclusion criteria, these
abstracts were excluded in the second stage, and contributed to a slightly higher
IRR of 0.72.
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This process left 755 full-text articles for the raters to assess. Of these, 5 were
immediately excluded for being duplicates or written in a non-English language.
Each rater took half of the remaining 750 articles each, to evaluate, resulting in 632
exclusions. This left 118 studies to be included in the ALE meta-analysis, based
on whether the articles had the required information, or the authors were able to
provide the required data necessary for the analysis. After mining the information
accessible in the original articles and contacting the authors where required, we
included 57 studies and 73 contrasts in the final analysis.

See Figure 4.1 for an overview of the selection and inclusion process and Table
4.1 for a short description of the included studies.

Figure 4.1: The selection procedure for the inclusion of empirical studies. The flow of information
illustrates the different steps used in the meta-analysis to identify the relevant empirical studies
and is based on the PRISMA flow-diagram (Liberati et al., 2009). In between brackets the number
of unique papers (N) and the interrater reliability score (IRR) are shown where relevant.
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4.2.2 Activation likelihood estimation
4.2.2.1 Contrasts

Given the number of studies that we identified, we were able to compute the
following main interference and inhibition contrasts (Eickhoff et al., 2016): Incon-
gruent > Congruent (based on 25 studies with 29 experiments, 387 foci and 834
unique subjects) and Stop|NoGo > Go (32 studies with 44 experiments, 945 foci
and 865 unique subjects). While there were too few studies per task to warrant a
robust comparison between the different tasks, an exploratory comparison was
done between the Go/No-Go and Stop-Signal tasks. There were four studies
which reported the coordinates in Talairach space and were converted to MNI
using the Lancaster transform as implemented in GingerALE (V.3.0.2; (Lancaster
et al., 2007)).

4.2.2.2 NiMARE parameters

An activation likelihood estimation (ALE; (Eickhoff et al., 2012; Fonov et al., 2011;
Fonov et al., 2009; Turkeltaub et al., 2002; Turkeltaub et al., 2012) meta-analysis was
performed using NiMARE (V.0.0.5; (Salo et al., 2020). Modeled activation maps
were generated for each experiment by convolving each focus with a Gaussian
kernel determined by sample size. For voxels with overlapping kernels, the maxi-
mum value was retained. The modeled activation maps were rendered in MNI
152 space (Fonov et al., 2011; Fonov et al., 2009) at 2x2x2mm resolution. A map of
ALE values was then computed for the sample as the union of modeled activation
values across experiments. Voxel-wise statistical significance was determined
based on an analytically derived null distribution using the method described in
(Eickhoff et al., 2012), prior to multiple comparisons correction. A cluster-forming
threshold of p < 0.001 was used to perform cluster-level FWE correction. 10.000
iterations were performed to estimate a null distribution of cluster sizes, in which
the locations of coordinates were randomly drawn from a grey matter template
and the maximum cluster size was recorded after applying an uncorrected cluster-
forming threshold of p < 0.001. The negative log-transformed p-value for each
cluster in the thresholded map was determined based on the cluster sizes. See
Figure 4.2 for a schematic of the ALE method employed for the main contrasts.

Following dataset-specific ALE meta-analyses, a subtraction analysis with 10.000
iterations was performed to compare the two datasets according to the procedure
from (Laird et al., 2005). In short, the subtraction analysis entailed that all ex-
periments that contributed to the initial contrast were pooled and randomized
over two groups. The ALE values for these two randomly assigned groups were
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then calculated, and the difference between these ALE values was recorded per
voxel. This process was repeated 10,000 times and resulted in a null distribution
for the difference in ALE values. The actual observed difference between the two
contrasts was then compared to the null-distribution and resulted in a Z-value
map. As there is no established method for multiple comparison corrections for
ALE difference maps a conservative threshold of p < 0.001 was used to extract the
clusters (Eickhoff et al., 2011). Note that contrary to GingerALE the subtraction
analysis in NiMARE considers all voxels instead of only evaluating the voxels that
were significant in the main contrasts. As such the subtraction analysis looks at
the whole brain difference between the two contrasts and can result in clusters
that were not found in the main ALE contrasts. The table of clusters was extracted
using AtlasReader (V.0.1.2; (Notter et al., 2019)) using the resulting Z-map, a re-
spective threshold of 1.645 or 3.091 for the main and subtraction analysis which
corresponds to the one-sided Z-value, with a 95% and 99.9% confidence interval
and a minimum cluster size of 64mm3. Since cluster-level inference was used for
the main contrasts, the cluster itself has an associated probability and subpeaks are
not meaningful (Woo et al., 2014). As such, all voxels that are part of a given cluster
are set to the cluster-level Z-value significance and therefore the entire cluster
is set to a single cluster-level significant value. The reported cluster coordinates
therefore correspond to the centre of mass (COM) and not to the peak Z-value of a
given cluster.

4.2.2.3 Anatomical labels

As the clusters can span across a number of distinct cortical and subcortical areas,
we chose to report the anatomical labels for which the cluster overlaps instead
of simplifying a cluster to a single COM coordinate. Another reason why we did
not solely focus on the COM is that the coordinate can be located outside of the
body of a cluster due to its irregular shape. The anatomical labels for the resulting
clusters were determined using a number of atlases (AAL2, Harvard-Oxford and
Julich; (Desikan et al., 2006; Eickhoff et al., 2006; Eickhoff et al., 2007; Eickhoff et al.,
2005; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006; Rolls et al., 2015)
where the overlap of the cluster with the main anatomical labels are provided.

4.2.3 Open science

A python notebook to query PubMed and Neurosynth is provided on the following
link. All syntax used to run the ALE analyses with the corresponding input and
output files are also provided in the following link.
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Figure 4.2: Overview of the ALE method. Peak coordinates from each included study are inputted
into NiMARE. The spatial uncertainty for each foci from each study is estimated using sample
size dependent gaussian kernels, where larger sample sizes have less spatial uncertainty and
therefore smaller kernels. The resulting modelled activation maps are combined to create an
uncorrected ALE union map. We end with the final thresholded ALE-map, which indicates
clusters at which the convergence of foci is above what would be expected at chance-level. The
diagram uses data from the main contrast of the inhibition subtype. FWHM: full width at half
maximum.

4.3 Results
4.3.1 Main contrast results

Because each significant cluster is generally not solely within one specific brain
area, we provide the main anatomical regions that overlap within each cluster.
The percentage overlap of each of these structures within the significant clusters
can be found in Supplementary Table 4.1 for each of the three atlases used (AAL2,
Harvard-Oxford and Julich).

4.3.1.1 Interference resolution

The NiMARE ALE analysis found 9 significant activation clusters within the main
contrast (Incongruent > Congruent) for the Flanker, Simon, Stroop and multi-
source interference tasks (see Figures 4.3 and 4.4). Significant clusters within
this contrast included the bilateral SMA, bilateral insula, left occipital inferior
lobule, left anterior intra-parietal sulcus, left IFG, left superior frontal gyrus and
left superior parietal lobule (see Table 4.2).

4.3.1.2 Global inhibition

The NiMARE ALE analysis found 14 significant activation clusters within the main
contrast (Stop|NoGo > Go) for the go/no-go and stop-signal tasks (see Figures
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Figure 4.3: A 3D representation of the activation clusters for the interference and inhibition
ALE analyses. A) Shows the clusters for both the interference (blue) and the inhibition (red)
contrasts. B) Shows the clusters for the interference contrast only and the input coordinates
from all interference tasks (green). C) Shows the clusters for the inhibition contrast only and the
input coordinates for all inhibition tasks (green). The three columns show the right, superior and
posterior view. R: right.

4.3 and 4.4). Significant clusters within this contrast includes the bilateral insula,
bilateral inferior parietal lobule, right precentral cortex, right inferior temporal
lobule, left fusiform gyrus, bilateral SMA, bilateral visual cortex and right mid
cingulate cortex (see Table 4.2).
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Note that previous work (Wessel, 2018) has shown that the probability of a
salient event and the pace of the trials both influence what cognitive process is
actually elicited by a Go/No-Go task. In Supplementary Table C.2, two additional
control analyses are reported where the robustness of the inhibition contrast results
was tested. When excluding the two Go/No-Go studies with equal probability
of a salient event, 14 similar clusters as reported in Table 4.2 were found. When
additionally excluding the six Go/No-Go studies that had a maximum trial length
longer than 4 seconds, minor differences were found as only 12 similar clusters
were found. Whether maximum trial length was the determining factor or whether
this difference was due to a reduced number of contrasts contributing to the ALE
analysis remains unclear.

4.3.1.2.1 Go/No-Go > Stop-Signal task

An exploratory analysis was done to directly compare the Go/No-Go and Stop-
Signal tasks. It should be noted that the number of contributing studies is low
for each of the two tasks and should therefore be interpretated with caution. The
Go/No-Go minus Stop-Signal subtraction analysis displayed a single significant
cluster in the right precentral cortex and the main anatomical overlap is given in
Table 4.3.

4.3.1.2.2 Stop-Signal > Go/No-Go task

The Stop-Signal minus Go/No-Go subtraction analysis displayed 5 significant
clusters located respectively in the left inferior parietal cortex, right visual cortex,
right premotor cortex, left insula and finally the left fusiform cortex. The main
anatomical overlap within each cluster can be seen in Table 4.3.

4.3.2 Comparison between interference and inhibition types

High overlap of activation clusters is found between interference and global
inhibition, it should be noted that the latter appears to recruit many more regions
than the former during the main contrasts for these task types. Recruitment of the
bilateral SMA, bilateral Insula, and left IFG is shown for both inhibition types.

4.3.3 Subtraction analysis

Here, we present results firstly for the subtraction analysis of the interference-
specific activations minus the inhibition-specific activations, and then the reverse
of this, to indicate where these processes differ on a neural level.
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Figure 4.4: The activation clusters for the interference and inhibition ALE analysis in standard
MNI space. The blue clusters correspond to the interference contrast, whereas the red clusters
correspond to the inhibition contrast. The numbers indicate the Z coordinates in MNI space. R:
right.

Table 4.3: Significant activation clusters of the Go/No-Go and Stop-Signal subtraction ALE
analysis. SST: Stop-Signal task, COM: Center of Mass L: left, R: right. The x, y and z coordinates
are in MNI space. Note that the Center of Mass for irregular shapes may lay outside of the actual
cluster used to extract the anatomical labels.

Contrast
Cluster
ID

Volume
(mm3)

Cluster
Z-value

COM
X

COM
Y

COM
Z

Main anatomical overlap

Go/NoGo >
SST

1 1376 3.45 26 -16 50 R Premotor cortex (BA6)

SST >
Go/NoGo

1 3976 3.50 -56 -36 32 L Inferior parietal lobule (PF)

2 3064 3.38 22 -74 -14 R Visual cortex (V3)
3 2920 3.50 4 24 36 R Premotor cortex (BA6)
4 1960 3.52 -40 12 -6 L Insula
5 1632 3.25 -26 -56 -2 L Fusiform cortex
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Table 4.4: Significant activation clusters of the interference and inhibition subtraction ALE analysis.
BA: Brodmann area. COM: Center of Mass; L: left, R: right. The x, y and z coordinates are in MNI
space. Note that the Center of Mass for irregular shapes may lay outside of the actual cluster
used to extract the anatomical labels.

Contrast
Cluster
ID

Volume
(mm3)

Cluster
Z-value

COM
X

COM
Y

COM
Z

Main anatomical overlap

Interference >
Inhibition

1 1976 3.54 -36 -32 36 L Inferior parietal lobule (PFt)

2 680 3.45 0 -70 52 L Precuneus
3 590 3.37 -8 -50 38 L & R Precuneus, L mid cin-

gulate cortex
Inhibition >
Interference

1 21792 3.59 56 -52 18 R Inferior parietal lobule (Pga,
PFm)

2 12496 3.73 -34 26 -14 L Frontal orbital cortex, L
frontal pole

3 9128 3.59 46 2 44 R Premotor cortex (BA6)
4 4160 3.50 22 48 22 R Frontal pole
5 3889 3.53 -58 -54 38 L inferior parietal lobule

(PFm, PF)
6 3504 3.63 26 20 -6 R Putamen, R orbital frontal

cortex, R insula, R caudate
7 744 3.28 -52 -80 12 L Lateral occipital cortex, L

visual cortex (V4, V5)
8 616 3.32 -20 -98 18 L Occipital pole, L visual cor-

tex (V1, V2)

4.3.3.1 Interference > Inhibition

The interference minus inhibition subtraction analysis displayed 3 significant
clusters. The main anatomical overlap within each cluster can be seen in Table
4.4. The largest clusters appear to be in the left inferior parietal lobule, bilateral
precuneus, and left mid cingulate cortex (see Figure 4.5).

4.3.3.2 Inhibition > Interference

The inhibition minus interference subtraction analysis displayed 8 significant
clusters. The main anatomical overlap within each cluster can be seen in Table
4.4. The largest clusters here appear to be in the bilateral inferior parietal lobule,
bilateral frontal poles, right premotor cortex, right striatum, and the left early
visual cortex (see Figure 4.5).
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Figure 4.5: A 3D representation of the activation clusters for the subtraction analyses. A) Shows
the clusters corresponding to the interference>inhibition subtraction (blue) and the clusters
corresponding to the inhibition>interference subtraction (red). B) Shows the clusters for the
interference>inhibition subtraction only. C) Shows the clusters for the inhibition>interference
subtraction only. The three columns show the right, superior and posterior view. R: right.
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4.4 Discussion

4.4.1 Dissociation between interference resolution and global
inhibition networks

Using the meta-analytical method of ALE, we sought to shed light on our current
understanding of the functional overlap between interference resolution and
global inhibition in the cortex and subcortex. The meta-analysis provides an
updated view on cognitive control by including only papers published in the
last decade. For the interference tasks, the associated regions were the bilateral
SMA, bilateral insula, left intraparietal sulcus, left superior parietal lobule, left
superior frontal gyrus, left inferior occipital lobule, and the left precentral gyrus.
Brain areas activated in the inhibition tasks include the bilateral insula, right IFG,
bilateral precentral gyrus, right inferior temporal lobule, left fusiform gyrus, left
supramarginal gyrus, bilateral SMA, visual cortex and frontal pole. The main
anatomical overlap of the interference and inhibition tasks was found in the
bilateral SMA and bilateral insula. Our subtraction analysis indicates that the
bilateral precuneus and mid cingulate cortex were implicated as distinct brain
areas involved in interference resolution but not global inhibition. The subtraction
analysis also revealed a number of regions involved in global inhibition that were
not recruited during interference resolution, namely the bilateral inferior parietal
lobule, the right premotor cortex and bilateral frontal pole. The differences in
neural recruitment between the Go/No-Go and Stop-Signal task seem to follow the
results as presented by (Swick et al., 2011) but as stated, the number of contributing
studies was low and should not be overinterpreted.

Generally, interference resolution appears to recruit more left-lateralized and
global inhibition more right-lateralized regions. Note that this lateralization pat-
tern for interference and inhibition tasks has been reported before (Aron et al.,
2004; Vanderhasselt et al., 2009; Zhang et al., 2014), although that is not always
the case (Serrien and Sovijärvi-Spapé, 2013). Taken together, the results of the
meta-analysis are clear-cut in terms of supporting the need for separating these
subtypes of cognitive control. Although there is evidence for some overlap be-
tween the networks that subserve these mechanisms, the results here, combined
with previous work (Huang et al., 2020; Hung et al., 2018; Tobia et al., 2016), largely
suggests that these cognitive processes are rooted in a number of distinct cortical
brain areas.

Contrary to previous findings, our results do not show activation of the ACC in
either contrast. Although the ACC is commonly implicated in cognitive control
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(Hung et al., 2018; Mayer et al., 2012; Nee et al., 2007; Zhang et al., 2017) discrepan-
cies have been shown (Veroude et al., 2013) and lesion studies have indicated that
the region is not necessary for functional cognitive control (Di Pellegrino et al.,
2007; Fellows and Farah, 2005; Mansouri et al., 2009). This is in contention to
early models of ACC function which suggest that the ACC plays a pivotal role in
conflict monitoring and action selection (Botvinick et al., 2001; Holroyd and Coles,
2008).

4.4.2 Subcortical involvement in cognitive control

Imaging the subcortex is notoriously difficult using standard fMRI acquisition and
analysis protocols (De Hollander et al., 2015; Hollander et al., 2017; Keuken et al.,
2018; Miletić et al., 2020; Mulder et al., 2019; Torrisi et al., 2018). To account for
these challenges, we only included studies that employed 3 Tesla or higher field
strengths with (near) isotropic voxel sizes of 3x3x3mm or smaller. Furthermore,
we only included studies that processed the fMRI data with FWHM smoothing
kernels that were smaller or equal to 8mm. Due to the whole brain acquisition
inclusion criteria, a number of studies had to be excluded that focussed on a
number of a-priori defined subcortical regions e.g., (Hollander et al., 2017; Miletić
et al., 2020). The stringent MRI parameter inclusion criteria did not, however,
result in a large number of studies that used ultra-high field MRI as 55 out of the
57 included studies employed 3T MRI, which might not be ideal for imaging the
subcortex (Forstmann et al., 2016; Hollander et al., 2017; Isaacs et al., 2020).

Regardless of the field strength of the 73 contrasts used in the final analysis, 27
(15 within global inhibition, 12 within interference resolution) of them reported a
peak coordinate within the subcortex. The average voxel volume of all included
studies analysed here was 24.6mm, which would give approximately 3-4 voxels in
the STN (82.5 ± 22.5mm), 19-20 voxels in the SN (469.9 ± 88.8mm) and 34-35 in the
Globus Pallidus externa (GPe; 860.3 ± 137.7mm; (Alkemade et al., 2020a), whereas
optimized UHF fMRI sequence for the subcortex can achieve voxel volumes of
3.38mm with relative ease (Hollander et al., 2017; Miletić et al., 2020).

As is clear from the results, there appears to be an absence of consistent subcor-
tical activation patterns in both the global inhibition and interference tasks. This
was surprising given the intracranial recording work and recent coordinate-based
fMRI meta-analyses for response inhibition (Hung et al., 2018; Zhang et al., 2017).
The only evidence found for the involvement of the subcortex was the putamen
(inhibition contrast, cluster 1), but no clear evidence for the thalamus or other
basal nuclei, in contrast to previous single studies (Aron, 2007; Duann et al., 2009;
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Wimmer et al., 2015; Zandbelt and Vink, 2010) and meta-analyses (Cieslik et al.,
2015; Guo et al., 2018; Hung et al., 2018). The putamen has been implicated as a
vital element for motor control in the process of global inhibition (Alexander et al.,
1986; Zandbelt and Vink, 2010). As such it remains unclear from this meta-analysis
which aspects of cognitive control are implemented in the subcortex and how
these processes are shared between interference resolution and global inhibition.

It appears that as methodology has progressed in the last decade, little improve-
ment was made toward increasing sensitivity in subcortical areas. This has made
sufficient aggregation of subcortical data by standard whole brain meta-analytical
methods problematic. As whole-brain acquisition usually entails sacrificing spatial
resolution, whole-brain coordinate based meta-analyses may not be optimal for
aggregating functional data for small subcortical regions. It should also be noted
that cluster-based thresholding inherently biases against small clusters, such as
those normally found in the subcortex (Woo et al., 2014). This suggests that ROI-
and image-based methods may be superior for inferring subcortical contributions
to cognitive mechanisms as investigated here (Colizoli et al., 2020; De Hollander
et al., 2015).

As a consequence, when conducting meta-analyses focusing on the human
subcortex one may use less conservative criteria (e.g., lower resolution, lower
field strengths), leading to more partial voluming and low numbers of voxels in
smaller structures or use stricter criteria, which results in lower sensitivity and a
lower number of studies. Such a choice can be overcome by moving away from
coordinate based meta-analyses and instead using analyses directed by predefined
regions of interest.

4.4.3 Limitations of the current study

A general limitation is the anatomical specificity of the results. In a coordinate-
based meta-analysis such as in the current study we only incorporate the re-
ported peak coordinates of what is likely a much larger cluster of activation.
This limitation can be addressed by conducting an image-based meta-analysis
using either the raw data or statistical maps of the included studies. This would,
however, require that the data is publicly shared on a data repository such as
Neurovault (https://neurovault.org; (Gorgolewski et al., 2015)) or OpenNeuro
(https://openneuro.org; (Poldrack et al., 2013)) which can be accompanied by a
data descriptor paper (“More Bang for Your Byte,” 2014; (Shaklee, 2014)). None of
the data analysed here was openly available online on such websites, though most
authors do make their data available upon direct request. A specific limitation
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of the current meta-analysis are the specific tasks that were included. Based on a
number of previous meta-analysis we chose to only include the Go/No-Go and
Stop-Signal task for global inhibition. Future work should extend this selection
of paradigms to also include tasks such as the anticipated response inhibition
task (Slater-Hammel, 1960) and countermanding saccade task (Hanes et al., 1998).
Other potential tasks of interest might be the random dot motion paradigm which
has been used in the past to investigate stimulus and response conflict processing
(e.g., (Wendelken et al., 2009). Note that ideally the number of experiments across
the different paradigms which contributed to the contrast is balanced (Müller et al.,
2018). Finally, due to the selection of specific tasks, the interference contrast is
mostly based on equal probable salient events whereas this is approximately 1:3 for
the inhibition contrast. This difference in saliency might explain the involvement
of the parietal areas (and potentially the right IFG) in the interference contrast as
these have been linked to attentive processing (e.g., (Boehler et al., 2011)).

4.5 Conclusion

We set out to investigate the contribution of recent, high-resolution fMRI in the
study of cognitive control through an extensive meta-analysis. This has revealed a
gap in the neuroscientific literature pertaining to high resolution neuroimaging of
interference and inhibition tasks. In particular, subcortical findings did not result
in clusters that survived statistical threshold. The results presented here show large
overlaps but also some discrepancies with previous work investigating the brain
regions underpinning interference resolution and global inhibition. Cortically, the
involvement of the insula and SMA in both mechanisms is not surprising, though
the lack of significant activation in the ACC indicates that our understanding
of the inhibitory and attentional networks is not yet complete. Future studies
focusing on imaging the subcortex are required to shed light on the networks
involved in cognitive control at a whole-brain level.
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Investigating intra-individual networks of response inhibition
and interference resolution using 7T MRI

This chapter is published as:
S. J. S. Isherwood, P.-L. Bazin, S. Miletić, N. R. Stevenson, A. C. Trutti, D. H. Y. Tse,
A. Heathcote, D. Matzke, R. J. Innes, S. Habli, D. R. Sokolowski, A. Alkemade, A. K.
Håberg, and B. U. Forstmann (2023a). Investigating Intra-Individual Networks
of Response Inhibition and Interference Resolution using 7T MRI. NeuroImage,
p. 119988.
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Abstract

Response inhibition and interference resolution are often considered subcom-
ponents of an overarching inhibition system that utilizes the so-called cortico-
basal-ganglia loop. Up until now, most previous functional magnetic resonance
imaging (fMRI) literature has compared the two using between-subject designs,
pooling data in the form of a meta-analysis or comparing different groups. Here,
we investigate the overlap of activation patterns underlying response inhibition
and interference resolution on a within-subject level, using ultra-high field MRI.
In this model-based study, we furthered the functional analysis with cognitive
modelling techniques to provide a more in-depth understanding of behaviour.
We applied the stop-signal task and multi-source interference task to measure
response inhibition and interference resolution, respectively. Our results lead us
to conclude that these constructs are rooted in anatomically distinct brain areas
and provide little evidence for spatial overlap. Across the two tasks, common
BOLD responses were observed in the inferior frontal gyrus and anterior insula.
Interference resolution relied more heavily on subcortical components, specifically
nodes of the commonly referred to indirect and hyperdirect pathways, as well
as the anterior cingulate cortex, and pre-supplementary motor area. Our data
indicated that orbitofrontal cortex activation is specific to response inhibition. Our
model-based approach provided evidence for the dissimilarity in behavioural
dynamics between the two tasks. The current work exemplifies the importance
of reducing inter-individual variance when comparing network patterns and the
value of UHF-MRI for high resolution functional mapping.

108



Investigating intra-individual networks

5.1 Introduction

Response inhibition is defined as the global inhibition of a planned or already initi-
ated response, commonly investigated using the stop-signal task (SST; Aron (2011)
and Logan and Cowan (1984)). Interference resolution is a selective inhibition
process that functions to suppress prepotent but suboptimal behaviour and is re-
quired for tasks such as the multi-source interference task (MSIT; Bush et al. (2003).
Although both constructs are placed under the umbrella of inhibition-related func-
tioning, concrete knowledge on their overlap in neural implementation is lacking
(Isherwood et al., 2021b; Nee et al., 2007; Schmidt et al., 2020; Swick et al., 2011).
Both the SST and MSIT have yielded robust results in functional magnetic reso-
nance imaging (fMRI) studies and lend themselves well to cognitive modelling,
although the neural architectures underlying behaviour in the tasks have not been
directly compared (Bush and Shin, 2006; Deng et al., 2018; Hollander et al., 2017;
Miletić et al., 2020).

Accumulating evidence indicates response inhibition is executed via a complex
cortico-basal-ganglia network which is also involved in action planning and initi-
ation (Albin et al., 1989; DeLong, 1990; Jahanshahi et al., 2015; Wessel and Aron,
2017), though some work has revealed inconsistencies in this theory (Hollander
et al., 2017; Miletić et al., 2020). Through these intricate subcortical-cortical con-
nections the idea is that the direct pathway plays a pivotal role in the initiation of
movement (see Fig. 5.1). It is generally accepted that two separate pathways, the
indirect and hyperdirect, work in tandem to pause or inhibit planned or already
initiated movement (Diesburg and Wessel, 2021; Schmidt and Berke, 2017). While
the role of this network in response inhibition has been widely investigated, its
role in interference resolution remains elusive. With the idea that interference
resolution is a type of selective inhibition, and response inhibition a more global
method of inhibition, we sought to investigate to what extent they share common
neural substrates within and outside of these canonical inhibitory pathways.

Previous meta-analyses and original studies indicate that the two types of in-
hibitory control utilize several distinct brain areas, namely the pre-supplementary
motor area (preSMA) and subthalamic nucleus (STN) in response inhibition and
the anterior cingulate cortex (ACC), superior parietal lobule (SPL) and striatum in
interference resolution (Cieslik et al., 2015; Hung et al., 2018). However, overlap-
ping activation has been found in the anterior insula (aI), preSMA, and inferior
frontal gyrus (Cieslik et al., 2015; Hung et al., 2018; Isherwood et al., 2021b). These
studies also suggest that response inhibition recruits a more right-lateralized, and
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Figure 5.1: The direct, indirect and hyperdirect pathways in humans (adapted from Diesburg
and Wessel (2021)). Glutamatergic connections are represented as green lines, GABAergic
connections as red and a reduction in signaling as dotted. IFG, inferior frontal gyrus; preSMA,
pre-supplementary motor area; GPe, globus pallidus externa; GPi, globus pallidus interna; SNr,
substantia nigra pars reticulata; STN, subthalamic nucleus.

interference resolution a more left-lateralized network. Combined, these studies
found little evidence of common subcortical involvement across the tasks. It is
important to note that almost all meta-analyses are based mostly on 1.5T or 3T
data and may lack the signal quality (in terms of signal-to-noise ratios) necessary
to uncover activation in deeper parts of the brain. As such, there is an abundance
of studies investigating both response inhibition and interference resolution in
isolation, but few that have focused on intra-individual overlaps (Sebastian et al.,
2013), especially at higher field strengths.

In addition to a lack of within-subject studies, model-based imaging approaches
are missing (Maanen et al., 2015; Sebastian et al., 2018). Such an approach allows
us to further understand the algorithmic level underlying behaviour as well
as the implementation level in the brain (Marr, 1982), giving us the tools to
gain mechanistic understanding. For example, if a parameter of a cognitive
model correlates with brain activity in a specific region, there is an indication
that the region could be involved in the specific process that parameter defines.
To gain a deeper understanding of the neural signatures of response inhibition
and interference resolution, here we apply both a well-established and a novel
method of cognitive modelling to the two tasks (Matzke et al., 2017; Matzke
et al., 2013). The stop-signal reaction time (SSRT) is the canonical marker of
behavioural stopping ability during the SST and can be estimated using several
methods (Logan and Cowan, 1984; Matzke et al., 2018). This marker has been
shown to correlate negatively with nodes of the indirect pathway including the
rIFG, caudate nucleus, and STN activity (Aron and Poldrack, 2006; Li et al., 2006;
Whelan et al., 2012). To the best of our knowledge, there are no model-based fMRI
studies of the MSIT. Here, we apply an evidence accumulation model, the racing
Wald, to identify whether we can capture behaviour during interference resolution
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in terms of changes in drift rate, threshold or non-decision time (Logan et al., 2014;
Stevenson et al., 2023).

To accurately compare these two tasks, we employed ultra-high field magnetic
resonance imaging (UHF-MRI) to acquire within-subject fMRI data of the SST and
MSIT. UHF-MRI allowed us to obtain high resolution and optimized contrasts
in deep subcortical areas as well as maintaining sufficient signal in the cortex
(Isherwood et al., 2021a; Miletić et al., 2020). The echo time is important for
optimal BOLD-sensitivity and should be equal to the T2* of the tissue of interest,
for the STN and GPe this is around 14 ms (Posse et al., 1999). We therefore ‘tailored’
the sequence to the subcortex, by choosing a TE more optimal for it (Miletić et al.,
2020). This, of course, results in a suboptimal TE for imaging cortical regions
(which is around 30 ms). Due to the increased signal you achieve in the cortex,
simply from being closer to the MRI head coils, we chose to focus on increasing
sensitivity to subcortical BOLD responses which are widely underrepresented in
functional studies.

We fit both whole-brain and region of interest (ROI) based general linear models
(GLMs) for each participant of the study and compared their activation patterns.
As the precise delineation of smaller subcortical structures is crucial for accurate
statistical analysis, we here used the multi-contrast anatomical subcortical struc-
tures parcellation (MASSP) algorithm to directly obtain individual masks for each
participant (Bazin et al., 2020). To better understand the mechanisms underlying
observed behaviour in each task, we utilized separate cognitive modelling tech-
niques. Based on previous literature, we expected to replicate findings of cortical
overlap of response inhibition and interference resolution in the aI, preSMA, and
IFG. Additionally, by using the high-resolution subcortical masks derived we
aimed to explore possible commonalities in basal ganglia structures that constitute
canonical inhibitory pathways.

5.2 Materials and Methods

5.2.1 Participants

A total of 37 participants (20 female; mean age 26.3 ± 5.6; age range 19 – 39 years)
completed the study, which was approved by the ethical committee at the Univer-
sity of Amsterdam, the Netherlands, and the Regional Committees for Medical
and Health Research Ethics, Norway. Written informed consent and MRI screening
forms were obtained from all participants. The participants were recruited from
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the Norwegian University of Science and Technology and had corrected-to-normal
vision and no history of epilepsy or overt clinical neuropsychiatric disease.

5.2.2 Scanning Protocols

Each participant was scanned in a total of four MR sessions as part of a larger
project on a Siemens MAGNETOM TERRA (Tesla (T) = 7; gradient strength = 80
mT/m at 200 T/m/s) with a 32-channel head coil. Here, we only describe the
sessions that acquired the high resolution anatomical images and the SST and
MSIT experimental data. The anatomical session acquired a multi-echo gradient
recalled echo scan (GRE; TR = 31.0 ms, TE1 = 2.51 ms, TE2 = 7.22 ms, TE3 = 14.44
ms, TE4 = 23.23 ms, FA= 12°, FOV = 240 × 240 × 168 mm) and an MP2RAGE scan
(TR = 4300 ms; TE = 1.99 ms; inversions TI1 = 840 ms, TI2 = 3270 ms; flip angle 1 =
5°, flip angle 2 = 6° Field of View (FOV) = 240 x 240 x 168 mm; bandwidth (BW)
= 250 Hz/Px; Marques et al. (2010)). The experimental session consisted of four
functional echo-planar imaging runs with subsequent acquisition of 4 EPI volumes
with opposite phase encoding direction for susceptibility distortion purposes. The
functional data was collected using a single echo 2D-EPI BOLD sequence (TR =
1380 ms; TE = 14 ms; MB = 2; GRAPPA = 3; voxel size = 1.5 mm isotropic; partial
Fourier = 6/8; flip angle = 60°; MS mode = interleaved; FOV = 192 x 192 x 128 mm;
matrix size = 128 x 128; BW = 1446 Hz/Px; slices = 82; phase encoding direction =
A » P; echo spacing = 0.8 ms). Each task had a total of 2 runs, each with a 13:27
min acquisition time, for a total of 4 runs and 53:48 min functional scanning.

5.2.3 Physiological data

Physiological data (heart and breathing rate) were recorded for all participants
in order to estimate the effects of physiological noise on the fMRI data. An
18 regressor RETROICOR model was fit (Glover et al., 2000). This included a
fourth order phase Fourier expansion of the heart rate signal, second order phase
expansion of the respiration signal, and a second order phase Fourier expansion of
the interaction between heart rate and respiration (Harvey et al., 2008). Additional
regressors were used to model heart rate variability (HRV; Chang et al. (2009),
and respiratory volume per time unit (RVT; Birn et al. (2008) and Harrison et al.
(2021).The PhysIO toolbox (Kasper et al., 2017) as executed in the TAPAS software
(Frässle et al., 2021) was used for physiological regressor estimation.
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Figure 5.2: Task design of the SST (left) and MSIT (right). Trials in the SST lasted 7 seconds and
were either go or stop trials: a) shows an example of a stop trial, where the participant should
have attempted to inhibit responding to the right facing arrow. Trials in the MSIT also lasted 7
seconds. b) An example of an incongruent trial, where the correct response is 2 (middle finger on
the button box).

5.2.4 Experimental Paradigms

5.2.4.1 Stop Signal Task (SST)

To test response inhibition, we used the SST (Logan and Cowan, 1984; Verbruggen
et al., 2019). Participants were presented with a right or left-facing arrow sur-
rounded by a white circle in the middle of the screen. They were instructed to
respond to the direction of the arrow as quickly and as accurately as possible,
using the index finger on their left or right hand (see Fig. 5.2). 25% of the trials
were ‘stop’ trials, where the circle surrounding the stimulus turned red. The other
75% of the trials are termed ‘go’ trials, where the circle remains white. When
presented with a stop trial, participants were instructed to inhibit their response
to the direction of the arrow. On go trials, participants should respond to the
arrow as initially instructed. The time delay between the presentation of the arrow
stimulus on stop trials and the visual stop signal (the red circle), is defined as
the stop signal delay (SSD). The SSD was adjusted to the stopping ability of the
participant by means of a staircase procedure, where the SSD is increased 50ms if
the participant successfully stopped and decreased by 50ms when the participant
failed to stop. The SSD was initially set at 200ms for all participants. For analysis,
trials were categorized into go trials (GO; no visual stop signal cue), successful
stops (SS; visual cue presented, and response inhibited) and failed stops (FS; visual
cue presented but response still initiated).

5.2.4.2 Multi-source Interference Task (MSIT)

To test interference resolution, we used the MSIT (Bush et al., 2003). Participants
were presented with three numbers inside a white circle in the middle of the screen
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Figure 5.3: Conditions and stimuli presented in the MSIT. Possible stimuli are shown left or right
of the conditions. There were three possible stimuli in the CON condition, six possible stimuli
in the SIM and FLA conditions, and twelve possible stimuli in the INC condition. Each subject
was presented with three selected stimuli from each condition during the experiment. CON,
congruent; SIM, Simon; FLA, Flanker; INC, incongruent.

(see Fig. 5.2). Of these three numbers, two were identical and one differed. These
numbers could either be a 0, 1, 2 or 3. Participants responded by indicating the
identity, but not the position, of the number that was the odd one out as quickly
and accurately as possible using the index, middle and ring fingers of their right
hand. For example, the correct response to the stimulus ‘1 3 1’ was to press the
button corresponding to the number 3. There were four conditions; congruent
(CON), Simon (SIM), Flanker (FLA), and incongruent (INC; see Fig. 5.3).

CON trials incurred stimuli such as ‘1 0 0’ or ‘0 2 0’, in which the correct
responses were 1 and 2, respectively, and include a congruency between position
and identity of the correct response. SIM trials contained stimuli such as ‘0 0 1’
or ’2 0 0’, where the correct responses were also 1 and 2, respectively. The Simon
effect caused an inconsistency between the position and identity of the correct
answer, increasing the difficulty of the choice. FLA trials contained stimuli such
as ‘1 2 2’ or ‘3 2 3’, in which the correct responses were 1 and 2, respectively.
FLA trials also include a congruency between the position and identity of the
correct response, but this response was surrounded by goal-irrelevant stimuli
which act as distractors, which further increases choice difficulty, known as the
Flanker effect. Finally, INC trials contained stimuli such as ‘3 3 1’ or ‘1 1 2’, with
correct answers as 1 and 2, respectively. In INC trials, both the Simon and Flanker
effects were present. We defined interference effects as a bias towards a possible
choice option that is incorrect, the CON condition therefore had no interference
effects, as the zeros did not bias participants towards a potential or valid response
option. As there were different numbers of possible stimuli in each condition (e.g.,
three for the CON condition but twelve for the INC condition), each participant
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was pseudorandomly assigned three stimuli from each condition as to harmonize
any learning effects. After the response window, feedback of either ‘in time’
(responses less than 600ms), ‘too slow’ (responses between 600 – 900ms) or ‘very
slow’ (for response more than 900ms) was shown. This feedback was aimed to
keep participants responding quickly.

5.2.5 Behavioural Analyses

For both runs of the SST, median reaction times (RTs) on go and stop trials, the
mean stop-signal delay (SSD) and proportion of successful stops (SS) were cal-
culated. For each participant, the main measure of response inhibition, the stop-
signal reaction time (SSRT) were calculated using modelling techniques described
below. For both runs of the MSIT, median RTs and accuracy were calculated for
all four conditions. Bayes factors (BFs) were computed using the BayesFactor
package (Morey and Rouder, 2015).

5.2.6 Cognitive Modelling

5.2.6.1 SST
The SST was modelled using the Bayesian Estimation of Ex-Gaussian Stop-Signal
(BEESTS) reaction time distributions method (Matzke et al., 2017; Matzke et al.,
2013). The aim of modelling the SST is to estimate the efficiency of the unobserv-
able stopping response, commonly defined as the stop signal reaction time (SSRT).
The model is based on the standard horse-race model (see Fig. 5.4), where the go
process, initiated upon presentation of the stimulus, and the stop process, initiated
by the presentation of the visual stop signal, independently race against each other.
If the go process finishes the race first, the prepared action is executed. If the stop
process finishes first, this action is inhibited. This can be further formalized, if the
go RT is faster than the SSD + SSRT on a given trial, then the go process wins and
a signal-response RT (SRRT) is observed. If the go RT is slower than the SSD +
SSRT, then the stop process wins, and the action is inhibited. The RT distribution
derived from failed stop trials are estimated as a partially known (censored) go RT
distribution. The race model assumes that, on average, these SRRTs are quicker
than go RTs. Due to the simplicity of the go choice, incorrect response on go trials
were removed from the analysis (0.24% of all go data).

By using a Bayesian parametric approach (BPA), the entire distribution of SSRTs
is estimated, as opposed to using the mean or median approach, which provides
only a summary measure. The BPA assumes that go RTs and SSRTs follow an
ex-gaussian distribution (Matzke and Wagenmakers, 2009; Ratcliff and Murdock,

115



Chapter 5

1976). Such a distribution is defined by three parameters, the mean of the gaussian
component (µ), the standard deviation of the gaussian component (s) and the
mean of the exponential component (t). The BPA model simultaneously estimates
the go (µgo, sgo, tgo) and stop (µstop, sstop, tstop) RT distribution parameters. The
mean of the ex-gaussian distribution is the sum of the µ and t parameters, µgo

+ tgo derives the mean go RT and µstop + tstop derives the mean SSRT. Posterior
distributions for these go and stop parameters are estimated using Markov chain
Monte Carlo sampling (Gilks et al., 2003). Proper convergence of these chains
during sampling is diagnosed using the Gelman-Rubin statistic, where values of
1.1 or lower indicate the chains have converged (Gelman and Rubin, 1992). The
stop signal data is analyzed hierarchically, therefore assuming that subject-level
go and stop signal parameters are drawn from group-level distributions. Both
group-level and subject-level parameters are estimated simultaneously, where the
group-level distributions define the between-subject variability of the subject-level
parameters (Gelman and Hill, 2006). Hierarchical methods allow adjustment or
“shrinkage” of extreme or unlikely parameters estimates towards the group mean.

Attentional failures are captured by the model by means of trigger failures (tf),
where the stop process is not initiated and go failures (gf), where the go process is
not initiated. The overall probability of stopping remains the same, as stopping
and trigger failures are, by definition, mutually exclusive. Similarly, go responses
are not observed upon the manifestation of a go-failure. The priors used for the
population-level parameters of the model were truncated normal distributions,
constrained between 0 and 1000ms for the go and stop parameters and normal
distributions between -6 and 6 for P(tf) and P(gf) parameters. The priors for the
group-level means and group-level standard deviations are weakly informative
uniform distributions, as in (Matzke et al., 2017). After model estimation, an
inverse probit transformation that simultaneously considers the population-level
mean and the population-level standard deviation was applied to the P(tf) and
P(gf) parameters to convert them to the probability scale. The described model is
therefore comprised of 8 parameters (µgo, sgo, tgo, µstop, sstop, tstop, P(tf), P(gf)).

5.2.6.2 MSIT

There have been few attempts to investigate the MSIT within a model-based
framework. Here, we use a process-orientated approach developed by Stevenson
et al. (2023) to model participant behaviour during the task. Through cognitive
modelling, the aim is to disentangle the individual contribution that both the
Simon and Flanker effects have on behaviour, as well as their cumulative effects
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Figure 5.4: Schematic representation of the horse-race model (Heathcote et al., 2019). The horse-
race model treats go RTs and SSRTs as independent random variables, defining the finishing
times of either the go or the stop process. The signal-response RT (SRRT) distribution (grey) is
treated as a censored Go RT distribution. If the go RT on any given trial is longer than SSD +
SSRT, the response is successfully inhibited. SRRTs occur when the go RT on the given trial is
shorter than SSD + SSRT. Figure available at tinyurl.com/5hnyzz2w under CC-BY 2.0 license
(https://creativecommons.org/licenses/by/2.0/).

when both are present. The evidence accumulation model we used was the
racing Wald model (Logan et al., 2014). This model is characterized by three
parameters: the rate of evidence accumulation (drift rate), the decision threshold
(B) and non-decision time (t0). We assume that evidence accumulates during
each trial of the task at some rate until evidence for a certain decision reaches a
threshold, upon which a decision is triggered. The model assumes that most of
the between-condition effects can be put down to differences in drift rates. Since
there are three potential responses, there are three accumulators racing on each
trial. As a reminder, there are four conditions in this task, a CON condition (no
Simon or Flanker), SIM condition (Simon only), FLA condition (Flanker only)
and INC condition (both Simon and Flanker). We hypothesized that the drift
rate for each choice is jointly driven by an urgency component and the evidence
supporting that choice. The drift rate for any choice is therefore an addition of
the urgency component (n0), target evidence (nTarget), Simon evidence (nSimon),
and Flanker evidence (nFlank). Furthermore, we also found that response time
and accuracy were influenced by the position of the target, possibly due to left
to right reading effects (Stevenson et al., 2023). We therefore modified the drift
rate of the accumulator corresponding to the target based on position of the target.
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Additionally, the evidence accumulation process is subject to Gaussian noise W,
with standard deviation s, defining within-trial variation in drift rate, was fixed to
1 to satisfy scaling constraints. Consequently, the drift rate in our MSIT model can
be described as:

Where, vCorrect is equal to the summation of vTarget and the positional drift
rate modifier, which can vary among positions (1, 2 or 3). The positional drift rate
modifier npos3 was fixed to 0, by which the other positional modifiers (npos1 and
npos2) were relative. In total our MSIT model comprised 8 estimated parameters
(nFlank, nSimon, nTarget, npos1, npos2, n0, B, t0). The above-described model was se-
lected after model comparison against competing models as in Stevenson et al.
(2023). Uninformed priors were used for all parameters constituting a Gaussian
distribution centred on 0 with a standard deviation of 1.

5.2.7 Procedure and exclusions

Prior to the MRI session, all participants completed a practice version of the two
tasks to ensure that the task instructions were correctly understood. Each trial of
the functional tasks lasted 7 seconds. For the SST, six participants were excluded
on the basis of having (1) more than 10 go-omissions (non-responsive during Go
trials) across both runs. One of these participants also had (2) a stopping accuracy
of less than 35% or more than 65%. No participants were excluded for having (3)
a go-accuracy of less than 95%. Two of the already excluded participants had (4)
mean signal respond RTs that were longer on average than go RTs (inconsistent
with the race model; Logan and Cowan (1984)). For the MSIT, participants were
excluded if they performed below chance level (33%) in any of the four conditions.
One subject was excluded for using incorrect response buttons. Based on these
exclusions the final sample for the analysis was a total of 31 participants for the
SST (17 female; mean age 26.7 ± 5.9; age range 19 -39) and 36 participants for the
MSIT (19 female; mean age 26.4 ± 5.7; age range 19 - 39).

5.2.8 fMRI preprocessing pipeline

fMRIPrep was used to preprocess all acquired anatomical and functional data
(Esteban et al., 2020; Esteban et al., 2018). For each of the 2 BOLD runs found per
task per subject, the following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated by aligning and averaging
1 single-band references (SBRefs). A B0-nonuniformity map (or fieldmap) was
estimated based on two echo-planar imaging (EPI) references with opposing phase-
encoding directions, with 3dQwarp (Cox and Hyde (1997); AFNI 20160207). Based
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on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging)
reference was calculated for a more accurate co-registration with the anatomical
reference. The BOLD reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-based registration (Greve
and Fischl, 2009). Co-registration was configured with six degrees of freedom.
Head-motion parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation parameters) are estimated
before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. (2002)).
BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and
Hyde (1997); RRID:SCR _005927). First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep. The BOLD
time-series (including slice-timing correction when applied) were resampled onto
their original, native space by applying a single, composite trans- form to correct
for head-motion and susceptibility distortions. These resampled BOLD time-series
will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. Several confounding time-series were calculated based on the preprocessed
BOLD: framewise displacement (FD), DVARS (the spatial standard deviation of
difference images), and three region-wise global signals. FD was computed using
two formulations following Power (absolute sum of relative motions, Power
et al. (2014)) and Jenkinson (relative root mean square displacement between
affines, Jenkinson et al., 2002). FD and DVARS are calculated for each functional
run, both using their implementations in Nipype (following the definitions by
Power et al., 2014). The three global signals are extracted within the CSF, the
WM, and the whole-brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correction (CompCor, Behzadi
et al. (2007)). Principal components are estimated after high-pass filtering the
preprocessed BOLD time-series (using a discrete cosine filter with 128 s cut-off) for
the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 2% variable voxels within
the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined
CSF + WM) are generated in anatomical space. The implementation differs from
that of Behzadi et al. (2007) in that instead of eroding the masks by 2 pixels on
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely
contain a volume fraction of GM. This mask is obtained by dilating a GM mask
extracted from the FreeSurfer’s aseg segmentation, and it ensures components
are not extracted from voxels containing a minimal fraction of GM. Finally, these
masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in
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the original implementation). Components are also calculated separately within
the WM and CSF masks. For each CompCor decomposition, the k components
with the largest singular values are retained, such that the retained components’
time series are sufficient to explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the correction step were
also placed within the corresponding confounds file. The confound time series
derived from head motion esti- mates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al.,
2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS
were annotated as motion outliers. All resam- plings can be performed with a
single interpolation step by composing all the pertinent transformations (i.e. head-
motion transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,
1964). Non-gridded (surface) resamplings were performed using mri _vol2surf
(FreeSurfer). Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et
al. (2014), RRID:SCR _001362), mostly within the functional processing workflow.

5.2.9 fMRI analyses

5.2.9.1 General Linear Models (GLMs)
GLM analyses were performed at both a whole-brain voxel-wise and region-
specific level. A canonical double gamma hemodynamic response function (HRF)
with temporal derivative was used as the basis set for both tasks and both meth-
ods of analysis (Glover, 1999). The design matrix consisted of either the three
experimental conditions for the SST (GO, FS, SS) or the four for the MSIT (CON,
SIM, FLA, INC). Functional data were first spatially smoothed using SUSAN
(kernel size full width half maximum = 1.5 mm) and high-pass filtered before
GLM analysis (Smith and Brady, 1997). In addition to the task-specific regressors,
six motion parameters were also included (three translational and three rotational)
as well as DVARS and framewise displacement estimated during preprocessing.
20 physiological regressors obtained from RETROICOR estimations were also
included in the design matrix. For two participants on the second runs of the
SST physiological data were not collected due to technical reasons, the first 20
aCompCor components were used instead (Behzadi et al., 2007). Therefore, a
total of 31 or 32 regressors were used in the model, depending on the task being
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analyzed (SST or MSIT, respectively). The SST consists of three possible contrasts:
FS - GO, FS - SS and SS - GO. The MSIT consists of six possible contrasts: INC -
CON, INC - SIM, INC - FLA, SIM - CON, SIM - FLA and FLA - CON.

Whole-brain analyses were computed using the FILM method from FSL FEAT
(Jenkinson et al., 2012; Woolrich et al., 2001), accounting for autocorrelated resid-
uals. Fixed effects analyses were used to combine the resulting run-level GLMs
per task. Group-level models were subsequently estimated using FLAME1 and
FLAME2 from FSL (Woolrich et al., 2001). Statistical parametric maps (SPMs) were
generated to visualize the resulting group-level models. The maps were corrected
for the false discovery rate (FDR) using critical value of q < 0.05 (Yekutieli and
Benjamini, 1999).

Region of interest (ROI) analyses were then performed. Timeseries were ex-
tracted from each subcortical region of interest using probabilistic masks provided
by MASSP (Bazin et al., 2020), each voxels contribution to the mean signal of
the region was therefore weighted by its probability of belonging to the region.
Cortical regions parcellations were provided by the Harvard-Oxford cortical atlas
(Rizk-Jackson et al., 2011). The timeseries were subsequently converted to per-
centage signal change by dividing each timepoint by the mean timeseries signal,
multiplying by 100 and subtracting 100. These timeseries were extracted from
unsmoothed data so to ensure regional specificity. Runs were concatenated within
task. We only infer from positive BOLD responses due to the discrepancy around
negative BOLD responses (Schridde et al., 2008; Wade, 2002).

5.2.9.2 Comparisons

To investigate the similarities and differences in neural implementation during the
two tasks, we performed both a conjunction and subtraction analysis on the GLMs.
To do this, we first had to define a contrast for both tasks that best fits the inhi-
bition construct we were measuring. The SS - GO contrast of the SST represents
the triggering and successful implementation of the global inhibition pathway,
and therefore is the baseline definition of the network behind canonical response
inhibition. The INC – CON contrast of the MSIT exemplifies the highest cognitive
load of selective inhibition in the task and was therefore used for these analyses.
A conjunction map was generated by overlaying the FDR corrected group-level
z-maps of the two contrasts and keeping only voxels that survived significance in
both instances. For the subtraction analysis, we calculated a voxel-wise compari-
son of the contrasts by nullifying voxels on the FDR corrected group-level z-map
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in the MSIT contrast that also survived thresholding in the SST contrast, and vice
versa.

In addition to brain-level comparisons, we also investigated behavioural-level
associations. To do this, we correlated the model estimates derived from the
independent modelling techniques described above. The mean of the group-level
parameter estimates were correlated with one another using Pearson’s r and FDR
corrected to account for multiple comparisons (Pearson, 1895).

5.3 Results
5.3.1 Cognitive modelling

5.3.1.1 SST
To assess the goodness of fit of the model to the data, we plot averaged simulated
posterior predictive data and the raw data averaged over all participants (see
Fig. 5.5). The cumulative density functions (CDFs) show the average cumulative
probability of observing a correct RT. The sum of each asymptote in each condition
equals the probability of making a response. In stop trials, this was around
0.5 due to the frequency of successful stops, where no response is observed.
Overall, the model fits the data very well, though it slightly overestimates the
RT in STOP conditions. In addition to CDFs referenced above, we also plot
the group level inhibition function and median signal-respond RTs (SRRTs). To
account for individual differences in participant-specific SSDs, we normalized
the inhibition function by averaging equal percentile ranges of SSDs for each
participant. As expected, the inhibition function increases with SSD, suggesting
that the probability of responding increases as the SSD increases. Additionally, the
median SRRTs increased as a function of SSD as expected. The median estimated
parameter values and 95% credible intervals for the SST model are as follows; µgo

= 0.54 (0.48, 0.59), sgo = 0.08 (0.05, 0.11), tgo = 0.09 (0.07, 0.11), µ stop = 0.21 (0.20,
0.22), s stop = 0.01 (0.0068, 0.031), t stop = 0.018 (0.0098, 0.043), P(tf) = 0.0062
(0.0019, 0.021), P(gf) = 0.018 (0.011, 0.029), SSRT = 0.23 (0.21, 0.24).

5.3.1.2 MSIT
To assess goodness of fit of the model and the MSIT data, we compared the av-
erage posterior predictive data to the average observed data collected from each
participant (see Fig. 5.6). For accuracy estimates, the model fits each condition
relatively well, though it slightly underestimates the accuracy in the INC con-
dition. Estimates for the three quantiles of RT data fit very well, though also
underestimating RTs in the INC condition and overestimating the spread of RTs

122



Investigating intra-individual networks

Figure 5.5: Goodness of fit graphs for the SST. a) Cumulative distribution functions. The data are
shown with thick lines, with open points marking the 10th, 30th, 50th, 70th, and 90th percentiles.
Model predictions are shown with thin lines and solid points, with the clusters of grey dots
showing the uncertainty in the percentiles from 100 randomly selected samples from the joint
posterior. b) Average inhibition function across all participants, as a function of nine equal
percentile ranges. c) Average median signal response RTs across all participants, as a function of
nine time intervals over the range of SSDs for each participant. The data are shown with solid
points. The uncertainty of the model predictions resulting from 100 randomly selected samples
from the joint posterior is shown with violin plots, with the white dots indicating the median of
the predictions.

123



Chapter 5

Figure 5.6: Model fit for accuracy, RTs on correct trials and RTs on error trials in the MSIT. The
accuracy graph displays group-level accuracy for each of the four conditions. The RT figures
display the 10th, 50th and 90th percentiles for the correct (middle) and error (right) trials. Black
denotes the acquired data; shaded grey denotes the model predictions. The uncertainties of
the model estimates resulting from 100 randomly selected samples from the joint posterior are
denoted by the spread of the shaded area.

in the SIM condition. Due to the small number of errors in the task, RT data for
incorrect responses had a more variable model fit. The mean parameter values
and 95% credible intervals for the MSIT model are as follows; nFlank = 1.25 (1.06,
1.44), nSimon = 1.31 (1.09, 1.52), nTarget = 3.32 (3.00, 3.66), npos1 = 0.46 (0.25, 0.68),
npos2 = 0.068 (-0.09, 0.24), n0 = -0.08 (-0.34, 0.19), B = 1.69 (1.57, 1.84), t0 = 0.27 (0.24,
0.29). As shown from the parameter estimates, the nFlank and nSimon parameters
are of similar values suggesting that both types of interference introduce a similar
amount of conflict to resolve. These results indicate that both types of interference
biased participants equally.

5.3.2 Comparisons

To identify behavioural associations between the two tasks, we correlated the
estimated model parameters within-subject. Fig. 5.7 shows the results of this
analysis. There were no significant correlations in parameter estimates between
models after multiple comparison correction. This suggests that the parameters we
estimated by decomposing the behavioural data in the two tasks are not linearly
dependent.

5.3.3 Behavioural analyses

5.3.3.1 SST

The Go RTs for correct responses were within normal range for fMRI studies
of response inhibition (Miletić et al., 2020; Verbruggen et al., 2019). Overall,
participants had a mean stopping accuracy of 54 ± 1%. Go omissions and Go
errors were slightly higher than previous studies (Hollander et al., 2017; Miletić
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Figure 5.7: Correlation heatmap depicting associations within and between models for the SST
and MSIT. Darker colours indicate larger correlations, grey denotes correlations that were non-
significant (p > 0.05 FDR corrected). Between-model correlations are shown within a black box.

Table 5.1: Group-level descriptive statistics of the main quantitative aspects of the SST. Standard
errors are given.

Median go
RT (ms)

Median failed
stop RT (ms)

Go
omissions
(%)

Go
errors
(%)

Mean
SSRT (ms)

Median
SSD (ms)

Mean stopping
accuracy (%)

626 ± 25 543 ± 22 1.9 ± 0.4 2.2 ± 0.4 251 ± 6 350 ± 30 54 ± 1

et al., 2020). SSRT was calculated using the modelling parameters estimated with
BEESTS where SSRT is equal to the addition of µstop and tstop. Median Go RT
did not correlate with estimates of SSRTs when corrected for trigger failures, in
accordance with the independence assumption of the independent race model
(Aron and Poldrack, 2006; Logan and Cowan, 1984).

5.3.3.2 MSIT
Table 5.2 illustrates the differences in RTs and accuracy between the four conditions.
All RTs and accuracies were significantly different between conditions based on
BFs and FDR correct p-values. Based on FDR-corrected p-values and BFs the
differences in RT and accuracy between all conditions were highly significant (p <
0.001; BF > 1e3) with the exception of the SIM – FLA comparisons (RT: p = 0.003,
BF = 2.1e1; Accuracy: p = 0.006, BF = 9.7).

5.3.4 GLMs: Whole-brain analyses

5.3.4.1 SST
For the FS - GO contrast (see Fig. 5.8) we observed many areas that show significant
BOLD responses, in line with previous findings (Hollander et al., 2017; Miletić
et al., 2020; Ray Li et al., 2008). Cortically, these regions included the IFG, preSMA,
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Table 5.2: Group-level median RTs and mean accuracies for each condition in the MSIT. Standard
errors are given.

Median RT (ms) Mean accuracy (%)
CON 536 ± 10 99.3 ± 0.3
SIM 604 ± 12 90.4 ± 1.7
FLA 630 ± 12 95.5 ± 0.8
INC 702 ± 15 78.1 ± 2.5

ACC, and aI. Subcortically, significant differences between the FS and GO trials
were found in the caudate nucleus (CN), putamen (PUT), thalamus (Tha), STN,
and SN. For the FS - SS contrast, we observed similar activation patterns as with
the former contrast, both cortically and subcortically. For the SS - GO contrast, we
found significant cluster differences in four cortical regions; the aI, M1, IFG, and
occipital fusiform gyrus, and two subcortical regions; the CN and Tha.

5.3.4.2 MSIT

For our main measure of interference resolution, the INC – CON contrast, we
observe marked differences in recruitment of the ACC, insula, Tha, and VTA (see
Fig. 5.9). We also observe larger recruitment of the ACC and insula in the FLA -
CON contrast, but not for the SIM - CON contrast, suggesting these regions are
more engaged when resolving the Flanker effect. The SIM - FLA contrast does not
display significant differences in activation patterns in the voxel-wise GLMs and
is therefore not included in Fig. 5.9. The contrasts comparing the FLA and SIM
conditions to the INC condition display similar differences in the recruitment of
the ACC and insula, though to a much lesser extent.

5.3.5 Conjunction analysis

To investigate the overlap between response inhibition and interference resolution
on a network-level, we calculated a conjunction map between the SS - GO and
INC – CON contrasts of the SST and MSIT, respectively. The conjunction map was
calculated using the minimum FDR corrected z-score of each contrasts group-level
model (see Fig. 5.10). Notable overlap of activation patterns between the two tasks
includes the bilateral aI and rIFG.

5.3.6 Subtraction analysis

To observe regions of the brain recruited specifically for response inhibition or
interference resolution, we compared the statistically significant activation of the
SS - GO contrast from the SST and the INC - CON contrast from the MSIT. Fig. 5.11
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Figure 5.8: Group-level SPMs of the three main contrasts of the SST. Activation colours indicate
FDR thresholded (q < 0.05) z-values. Sagittal (top), axial (middle) and a zoomed in coronal
(bottom) view are shown. Coloured contour lines indicate regions of interest (CN in dark blue,
PUT in red, STN in light blue, GPe in dark green, GPi in light green, VTA in black, rIFG in white,
and SN in pink. The background template and coordinates are in MNI2009c (1mm); slices are
drawn through x = 51 (top), y = -13 (bottom), and z = 2 (middle).

Figure 5.9: Group-level SPMs of five of the six contrasts of the MSIT. Activation colours indicate
FDR thresholded (q < 0.05) z-values. Sagittal (top), axial (middle) and a zoomed in coronal
(bottom) view are shown. Coloured contour lines indicate regions of interest (CN in dark blue,
PUT in red, STN in light blue, GPe in dark green, GPi in light green, VTA in black, rIFG in white,
and SN in pink. The background template and coordinates are in MNI2009c (1mm), where x = 0,
y = -13, and z = 2.
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Figure 5.10: Conjunction analysis between activation from the SS – GO contrast in the SST and
INC – CON contrast in the MSIT. Activation colours indicate FDR thresholded (q < 0.05) z-values.
The background template and coordinates are in MNI2009c (1mm).

Figure 5.11: Subtraction analyses between activation from the SS – GO contrast in the SST and
INC - CON contrast in the MSIT. The MSIT - SST subtraction map is shown on the top, and the
SST - MSIT subtraction map on the bottom. Activation colours indicate FDR thresholded (q <
0.05) z-values. The background template and coordinates are in MNI2009c (1mm).

shows significant activation in the INC condition that were not significant in the
SS condition (MSIT - SST) and vice versa (SST - MSIT). The MSIT - SST subtraction
map indicates a number of significant clusters including the ACC, preSMA, lIFG,
anterior supramarginal gyrus (aSG), and Tha. The SST - MSIT subtraction map
shows significant activation in the posterior SG (pSG), orbitofrontal cortex, and
occipital fusiform gyrus.

5.3.7 GLMs: ROI analyses

5.3.7.1 SST

To statistically quantify the different activation patterns within each trial type and
contrast of the SST, we fit a set of GLMs using the canonical HRF to the timeseries
extracted from each ROI (see Fig. 5.12). t-values were calculated per run, per
ROI for each participant against baseline. In line with previous work (Hollander
et al., 2017; Miletić et al., 2020), significant bilateral STN activation was found in
FS and GO trials and right STN activation in SS trials (see Supplementary Fig.
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Figure 5.12: ROI analyses for all contrasts in the SST. The y-axis displays percent signal change
and the x-axis, ROIs. T-value significance are FDR corrected (q < 0.05). Error bars depict the 95%
confidence intervals for each region. Left hemisphere is shown in dark blue, and right in light
blue. Asterisks denotes significance. FS, failed stops; SS, successful stops; ACC, anterior cingulate
cortex; IFG, inferior frontal gyrus; Ins, insula; M1, motor cortex 1; pSG, posterior supramarginal
gyrus; SMA, pre-supplementary motor area; SPL, superior parietal lobule; CN; caudate nucleus;
GPe, globus pallidus externa; GPi, globus pallidus interna; PUT; putamen; RN, red nucleus; SN,
substantia nigra; STN, subthalamic nucleus; Str, striatum; Tha, thalamus; VTA, ventral tegmental
area. Orange denotes cortical regions, red, subcortical.

D.1). Other nodes of the direct, indirect, and hyperdirect pathways also showed
significant activation in all trial types (rIFG, preSMA, aI, SN, and Tha). Turning to
the contrasts of interest, we replicated previous findings that showed that FS trials
drive a large portion of activation in the subcortex (Hollander et al., 2017; Miletić
et al., 2020). Indeed, the only significant differences in activation found between
SS and GO trials in our ROIs were the bilateral IFG, pSG and M1, and right insula.
Although SS trials displayed a largely bilateral recruitment of ROIs, the analysis
provided evidence of some type of right-lateralized network in the IFG, insula,
GPe, GPi, RN, and STN. In the FS – GO contrast, significantly larger activation
was found in the ACC, rIFG, r-insula, pSG, preSMA, lCN, rGPe, RN, SN, rSTN,
Tha, and VTA. Both cortically and subcortically, similar activation profiles for the
FS – GO and FS – SS contrasts were found, with the notable exception of the IFG,
pSG, and lCN which showed similar recruitment on both types of stop trials.

5.3.7.2 MSIT

The same ROI analysis was performed for the MSIT (see Fig. 5.13). Compared to
baseline, all trial types displayed significant activation in most if not all cortical and
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Figure 5.13: ROI analyses for all contrasts in the MSIT. The y-axis displays percent signal change
and the x-axis, ROIs. T-value significance are FDR corrected (q < 0.05). Error bars depict the
95% confidence intervals for each region. Left hemisphere is shown in dark blue, and right in
light blue. Asterisks denotes significance.INC, incongruent; FLA, Flanker; SIM, Simon; CON,
congruent; ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; Ins, insula; M1, motor
cortex 1; pSG, posterior supramarginal gyrus; SMA, pre-supplementary motor area; SPL, superior
parietal lobule; CN, caudate nucleus; GPe, globus pallidus externa; GPi, globus pallidus interna;
PUT, putamen; RN, red nucleus; SN, substantia nigra; STN, subthalamic nucleus; Str, striatum;
Tha, thalamus; VTA, ventral tegmental area. Orange denotes cortical regions, red, subcortical.

subcortical ROIs (see Supplementary Fig. D.2). Cortically, significant differences
in activation between the INC and CON trial types appeared in the ACC, IFG,
insula, and preSMA, replicating previous studies of the MSIT (Deng et al., 2018).
Subcortically, we found regions that have not been previously observed in this task.
Subcortical contribution to the INC - CON contrast included the lRN, rSN, rSTN,
Tha, and VTA. All of the INC, SIM and FLA trial types displayed a significant
difference in the preSMA from the easiest of the conditions CON, suggesting the
cortical region plays an important role in the Simon, Flanker, and joint Simon
and Flanker types of interference. For the SIM and FLA conditions, no significant
activation differences were found.
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Figure 5.14: Group-level correlations between GLM betas on the SS > Go contrast and SSRTs in the
SST. Significance is FDR corrected. r denotes the Pearson correlation, with p the corresponding
p-value. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue.

5.3.8 Model-based analyses

5.3.8.1 SST

To gain insight into which regions code for inhibition, we correlated ROI-based
brain activation with our SST model parameters, zooming in on SSRTs (see Fig.
5.14). No significant correlations between ROI activity and model parameters
were found. We did not replicate previous findings showing a negative correlation
between SSRTs and brain activation in SS > GO trials in the STN and the rIFG
(Aron and Poldrack, 2006; Li et al., 2006; Whelan et al., 2012). The same is also true
when correlating SSRT with brain activity on SS trial or the FS > SS contrast (see
Supplementary Fig. D.3). In order to compare these results to previous literature,
we have also correlated brain activity during the SST with SSRTs calculated using
the mean method (Logan and Cowan (1984); see Supplementary Fig. D.4) This
method calculates SSRT by subtracting the mean SSD from the mean RT of each
individual. When correlating SSRT (calculated by the mean method) with the
contrast of SS > GO we do not find any significant correlations, in contention
to previous work (Aron and Poldrack, 2006; Li et al., 2006). In addition, as
the modelling method of SSRT estimation we use here takes significantly more
behavioural information into account, and allows the estimation of the entire
distribution of SSRTs, we make inferences only based on these SSRTs, not SSRTs
calculated using the mean method.

5.3.8.2 MSIT

To observe which regions may code for aspects of interference resolution, we
correlated the MSIT model parameters with ROIs that are theorized to be involved
in selective inhibition (see Fig. 5.15). For this, we used the difference in drift rate
between the incongruent and congruent conditions, which results in nSimon + nFlank

for each participant separately. For our measure of neural activity, we calculated
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Figure 5.15: Group-level correlations between GLM betas on INC trials and the drift rate of INC
trials in the MSIT. Significance is FDR corrected. p denotes the significance level; r denotes the
Pearson correlation. Left hemisphere is shown in dark blue. Right hemisphere is shown in light
blue.

the difference in activation in each ROI on incongruent and congruent trials. After
multiple comparison correction, we found that these cognitive model parameters
correlated positively with activation in the right ACC and right IFG. We did not
find significant correlations in the left ACC, left IFG, or bilateral CN.

5.4 Discussion

This study aimed to gain insights into the neural and behavioural overlap of
response inhibition and interference resolution using a within-subject design. To
do so, we tested participants on two tasks, the SST and MSIT, to tap into these
subcomponents of inhibition and identify areas of similarities or differences that
inter-individual and meta-analytical techniques may miss. Using ultra-high field
(UHF) magnetic resonance imaging (MRI), tailored sequences and a high voxel
resolution, we were able to obtain robust results, especially in smaller, deeper
regions of the brain with a higher SNR than using canonical fMRI at lower fields.
Additionally, we used a model-based cognitive neuroscience approach to tap into
the latent level of response inhibition and interference control. The results provide
evidence of a common network for inhibition-based decision-making as well as
the existence of distinctive activation patterns. The whole-brain conjunction map
shows that shared activation was found in one central region of the canonical
inhibition network, the rIFG, as well as in the aI. Divergent activation regions were
found in the main contrast of the MSIT including the ACC, preSMA, lIFG, aSG,
and Tha. Inhibition during the SST also involved the recruitment of regions not
required for interference resolution, namely the pSG, orbitofrontal cortex (OFC),
and occipital fusiform gyrus. The ROI-based analysis is largely in accordance
with these whole-brain findings, while suggesting that the posterior division of
the supramarginal gyrus may be recruited both in interference resolution and
response inhibition.
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First, we will discuss the findings of each task separately and compare them to
previous task-specific findings before turning to the between-task comparison. For
the SST, we replicate recent imaging findings that call into question the idea of the
classical inhibitory pathway underlying response inhibition in humans (Hollander
et al., 2017; Jahfari et al., 2011; Miletić et al., 2020; Ray Li et al., 2008). Our whole-
brain and ROI analyses indicate that neither the STN, nor any other basal ganglia
regions displayed heightened activity when comparing SS trials to GO trials, in
contrast to much of the literature on response inhibition (Aron and Poldrack, 2006;
Aron et al., 2014; Eagle et al., 2008). A large-scale pattern of greater activation in
the basal ganglia nuclei when comparing FS trials to GO trials was observed. This
suggests that the act of stopping does not drive the recruitment of the canonical
indirect or hyperdirect pathway, but that activation in these subcortical regions is
driven by a failure to inhibit one’s actions. Contrasting FS trials with SS and GO
trials displays an almost identical network of heightened activity in the ACC, IFG,
insula, preSMA, STN, SN, VTA, Tha, and RN. It is however worth noting that SS
and GO trials do recruit these nodes when compared to baseline, but to a much
lesser extent than FS trials (see Supplementary Fig. D.1). Significant bilateral IFG
activation was observed when comparing both types of stop trials (FS and SS) to
GO trials, suggesting the region may play a role in the detection and integration of
the salient stop signal, which is a role that has been theorized before and may not
be specific to inhibition tasks (Aron et al., 2004; Hampshire et al., 2010; Hampshire
et al., 2009; Miller and Cohen, 2001; Shallice et al., 2008; Wessel and Aron, 2013).
Although it seems that the BOLD response in this region does not differentiate
between successful and failed stopping, electrocorticography has shown increased
signaling in successful vs failed stopping (Swann et al., 2009; Wessel and Aron,
2013).

For the MSIT, group-level model estimates of the nSimon and nFlanker parameters
are comparable, suggesting that participants are equally biased by the Simon and
Flanker effects during the task. In addition, the ROI-based analyses observed no
differences in activation between the SIM and FLA conditions at the group-level
in any ROI, suggesting that these interference types are rooted in similar brain
regions and that they are recruited to a similar degree. Due to the similarity
in the two constructs, it may be that a greater number of trials or higher field
strength may be required to observe neural differences in their implementation.
Contrasting the SIM and FLA conditions with the INC condition display similar
responses, with greater activation found in the IFG, preSMA, and SPL for both.
For the INC – CON contrast, we observed a marked recruitment of both cortical
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and subcortical regions that appear to be required for interference resolution.
A recent meta-analysis found activation differences in the ACC, preSMA, IFG,
insula and putamen when contrasting these conditions (Deng et al., 2018) Here,
we replicate these findings as well as provide evidence that a larger network
including the SPL, pSG, GPi/e, STN, SN, RN, Tha, and VTA are also activated
during interference resolution. In contrast to other previous findings, we did not
see significant activation of the CN during interference resolution (Schmidt et al.,
2020).

We performed both conjunction and subtraction analyses of the two tasks to
observe common and distinct brain areas involved in response inhibition and
interference resolution, respectively. The conjunction analysis indicates an overlap
in the rIFG and bilateral aI. We do not observe significant differences in lateral-
ization patterns across the two tasks, in contention to previous meta-analytical
findings (Isherwood et al., 2021b). Multiple regions were identified that are re-
cruited during interference resolution and not response inhibition, namely the
ACC, preSMA, lIFG, aSG, and Tha. The ACC and preSMA are highly connected
and potentially work together to resolve interference in the environment (Nachev
et al., 2008). We also found evidence that the OFC and occipital fusiform gyrus play
a role in response inhibition but not interference resolution. Many studies have
associated the OFC with the ability to inhibit (Adnan Majid et al., 2013; Eagle et al.,
2008; Kringelbach and Rolls, 2004). Although the OFC appears to be recruited
during response inhibition, the activation does not appear inhibition-specific as
it is observed in a wide variety of roles including value-based decision-making
(Montague and Berns, 2002; O’Doherty, 2014), prediction error signaling (Schultz
and Dickinson, 2000; Sul et al., 2010) and associative representations (Bechara et al.,
1997; Bechara et al., 2001). The activation of the occipital fusiform gyrus is usually
not associated with response inhibition specifically, but does play a role in colour
processing (Bartels and Zeki, 2000). This finding may reflect the presentation of
the red stop signal in the SST, as it is the only aspect of the two tasks that differ in
colour.

The findings presented here paint a picture of largely divergent networks un-
derlying interference resolution and response inhibition in humans. This demon-
strates the need for more intra-individual studies when comparing psychological
constructs, owing to the minimization in measurement differences, physiological
differences (as all task data is derived on the same day) and the possible impact
of large individual variation when using different groups. The extent to which
these findings provide evidence for the canonical cortico-basal-ganglia loop is
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mixed. For the SST, this study provides evidence against the recruitment of the
indirect or hyperdirect pathway during successful response inhibition, as both
would implicate increased activity in the STN. These results are in contention to
both older and more recent models of response inhibition implementation (Aron
et al., 2014; Diesburg and Wessel, 2021; Schmidt and Berke, 2017). Resolution
of the combined Simon and Flanker effect does appear to recruit nodes of the
indirect and hyperdirect pathways. The IFG, rSTN, lSN, and Tha are active during
interference resolution, but we do not find evidence of the GPe/GPi or striatum in
the network, both at a whole-brain and ROI level. Our model-based analysis of
the MSIT revealed that the drift rate difference between INC and CON conditions
positively correlated with the difference in activity between INC and CON condi-
tions in the right ACC and right IFG. Since a larger difference in drift rate between
the two trial types indicates a greater level of susceptibility to the Simon or Flanker
effect, it appears that activity in these two regions somewhat indicate the degree to
which participants resolve conflicting stimuli. The ACC has long been suggested
to play a role in conflict monitoring (Van Veen and Carter, 2005; Wiecki and Frank,
2013) and these results may indicate that the region encodes the degree of detected
conflict. The IFG has been implicated in many roles, but the evidence of drift
rate encoding found here suggests it and the ACC are a major requirement for
interference resolution. Interestingly, we did not find any evidence of regions
encoding for our behavioural measure of response inhibition (SSRT).

Bringing the findings of this study together, it appears that interference resolu-
tion and response inhibition recruit markedly separate neural systems. On top of
this, the lack of correlation between modelling parameter estimations supports
the dissimilarity between processes on a behavioural level. There is therefore
little evidence that we should see these two phenomena as two sides of the same
inhibition coin. Despite that, the IFG and pSG appear to play a pivotal role in some
aspect of both tasks. In view of previous literature, it is likely that the IFG plays a
more domain general role in specific types of signal/conflict detection and that it
is needed to make the choice of what behavioural step to perform. The continued
lack of evidence that the hyperdirect and indirect pathway are solely engaged in
successful response inhibition raises serious concerns. We therefore argue that the
pathways involved in successful stopping and successful going are integrated and
that the nodes constituting these pathways play task-general roles. Considering
that regions of basal ganglia display greater activation for failed stopping, this
points towards a general network not specific to global response inhibition.
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The canonical stopping network: Revisiting the role of the
subcortex in response inhibition
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subcortex in response inhibition. submitted.
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Abstract

This study investigates the functional network underlying response inhibition in
the human brain, particularly the role of the basal ganglia in successful response
inhibition. We provide evidence that the canonical inhibition pathways may not be
recruited during successful response inhibition during the stop signal task (SST).
Instead, subcortical nodes including the substantia nigra, subthalamic nucleus,
thalamus, and ventral tegmental area are more likely to be activated during failed
stop trials, suggesting that successful inhibition does not rely on the recruitment
of these nodes. The findings challenge previous functional magnetic resonance
imaging (fMRI) studies of the SST and suggest the need to ascribe a separate
function to these networks. We also highlight the substantial effect smoothing can
have on the conclusions drawn from task-specific GLMs. This study presents a
proof of concept for meta-analytical methods that enable the merging of extensive,
unprocessed or unreduced datasets. It demonstrates the significant potential that
open-access data sharing can offer to the research community. With an increasing
number of datasets being shared publicly, researchers will have the ability to
conduct meta-analyses on more than just summary data.
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6.1 Introduction

Response inhibition, generally defined as the ability to suppress a planned or
already-initiated response (Logan, 1985), is an essential part of everyday motor
control, and underpinned by a series of cortical and subcortical pathways. Defin-
ing the neural mechanisms underlying response inhibition in the neurotypical
population has important consequences in the clinical neurosciences, where im-
pairment in these pathways has been associated with a number of neurological and
psychiatric diseases including Parkinson’s Disease, addiction and schizophrenia
(Chowdhury et al., 2018; Claassen et al., 2015; Congdon et al., 2014; Noël et al.,
2016; Rømer Thomsen et al., 2018; Seeley et al., 2009).

Response inhibition has been behaviourally examined using the stop signal
task (SST) for more than four decades. In the SST, participants make a motor
response as quickly as possible in response to a go signal. In a minority of trials
(usually around 25% of all trials), a stop signal appears shortly after the onset
of the go signal, indicating that the participant should not respond to the go
signal in that trial. The stop signal’s onset is normally adjusted after each stop
signal trial based on stopping success, such that each participant will be able
to stop successfully on approximately 50% of trials (Verbruggen et al., 2019).
Behavioural dynamics during the SST are interpreted under the framework of the
horse race model (Logan and Cowan, 1984). This model proposes that on each
stop trial, the presentation of the go stimulus triggers the go process, which races
towards a threshold that results in a response. Upon the presentation of the stop
signal, a stop process is similarly triggered, which races towards an independent
threshold. Depending on whether the go or stop process finishes first, the response
is respectively performed or inhibited. Performance on go trials and failed stop
(FS) trials (where the participant makes an inappropriate response) is quantified
by reaction time (RT). Performance on successful stop (SS) trials (where the stop
signal appears and the participant gives no response) is quantified by the stop
signal reaction time (SSRT), which estimates the speed of the latent stopping
process (Verbruggen et al., 2019).

Contemporary models of response inhibition propose that inhibition is realised
via three cortico-basal-ganglia pathways; the direct, indirect, and hyperdirect path-
ways. While all three are involved in response inhibition and movement, the
hyperdirect pathway has been theorized to be the pathway through which action
is ultimately cancelled (Aron and Poldrack, 2006). The signalling cascade orig-
inates from the prefrontal cortex and is thought to implement stopping upon
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detection of a stop signal by inhibition of the thalamus (Tha) via the subthalamic
nucleus (STN), substantia nigra (SN) and globus pallidus interna (GPi; Coudé
et al., 2018; Diesburg and Wessel, 2021). This pathway was originally identified
in rodents and non-human primates, but its anatomical plausibility in humans
was demonstrated by Chen and colleagues, who measured firing in the frontal
cortex 1-2 ms after stimulation of the STN (Chen et al., 2020). The connectivity of
these cortico-basal-ganglia tracts have also been demonstrated to be correlated
with stopping behaviour (Forstmann et al., 2012; Singh et al., 2021; Xu et al., 2016;
Zhang and Iwaki, 2020). Clinical studies have also demonstrated the importance
of subcortical regions, particularly the STN, in relation to stopping. Evidence from
Parkinson’s disease patients undergoing deep brain stimulation has associated the
STN with (successful) stopping behaviour (Alegre et al., 2013; Ray et al., 2009; Ray
et al., 2012) and demonstrated that bilateral stimulation of this region can improve
performance in the SST (Mancini et al., 2019).

Functional imaging research has been used extensively to elucidate which
regions are associated with action cancellation. These images are frequently
acquired at 3 Tesla (T) and the BOLD response during go (GO), FS, and SS trials is
assessed. Contrasts of interest are often FS > GO, SS > GO, and FS > SS. Cortically,
three regions have been consistently implicated: the right inferior frontal gyrus
(rIFG), pre-supplementary motor area (preSMA) and anterior insula (Aron et al.,
2014; Hollander et al., 2017; Isherwood et al., 2023a; Miletić et al., 2020; Swick
et al., 2011). In the subcortex, functional evidence is inconsistent. Contrasts of FS
> GO or SS > GO have intermittently implicated the STN in the SST (Aron and
Poldrack, 2006; Coxon et al., 2016; Yoon et al., 2019), but few studies have detected
differences in the BOLD response between FS and SS trials. Notably, many studies
have not detected differences in subcortical BOLD activity for these contrasts
(see e.g., Bloemendaal et al., 2016; Boehler et al., 2010; Chang and Guenther, 2020;
Gaillard et al., 2020; Xu et al., 2015. At higher field strengths (7T), a different pattern
emerges. FS > GO and FS > SS contrasts have consistently shown a widespread
subcortical BOLD response, with clusters of activation evident in the STN, SN,
Tha, GPi, and globus pallidus externa (GPe; Hollander et al., 2017; Isherwood
et al., 2023a; Miletić et al., 2020).

These disparities may arise due to the difficulty of imaging the human subcortex
in vivo with MRI. Due to its distance from the MR head coils, proximity of sub-
regions and varying biophysical properties, the subcortex can have limited inter-
regional contrast and a low signal-to-noise ratio (Bazin et al., 2020; Hollander et al.,
2017; Isaacs et al., 2018; Isherwood et al., 2021a; Keuken et al., 2018; Miletić et al.,
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2022). The subcortical regions are also relatively small structures. For example, the
STN has a volume of approximately 82 mm3; 3mm isotropic resolutions therefore
provide only 3 - 4 voxels for analysis of a relatively complex structure (Alkemade
et al., 2020a). Attaining sufficient signal in the deep brain for accurate statistical
analysis is therefore particularly difficult at lower field strengths (Murphy et al.,
2007).

Here, we reprocess and reanalyse five functional SST datasets to shed light on the
discrepancies in subcortical BOLD responses. Canonical methods of meta-analysis
have the tendency to lose information when compiling multiple sources of data,
due to reliance on summary statistics and a lack of raw data accessibility. Taking
advantage of the recent surge in open access data, we aimed to improve upon
these methods by using the raw data now available instead of relying on simple
summary measures (e.g., MNI coordinates). Though computationally expensive,
the gain in power from reanalysing multiple functional datasets without this loss
of information is of huge benefit. In addition, using raw data as a starting point for
datasets acquired separately allows one to minimize differences in preprocessing
and analyses pipelines. We chose datasets that used similar go stimuli (left or right
pointing arrows) to maintain as much consistency across the datasets as possible.
Stop signals during the SST are generally either of the auditory or visual type; we
opted to use both types in this study with the assumption that they rely on the
same underlying inhibition network (Ramautar et al., 2006).

6.2 Methods

6.2.1 Participants

This study combined data from five datasets, two acquired at 3T and three at
7T: Aron_3T (Aron and Poldrack, 2006), Poldrack_3T (Poldrack et al., 2016), de-
Hollander_7T (Hollander et al., 2017), Isherwood_7T (Isherwood et al., 2023a), and
Miletic_7T (Miletić et al., 2020). The number of participants and their relevant
demographics for each dataset are as follows: Aron_3T - 14 participants (4 female;
mean age 28.1 ± 4.1), Poldrack_3T - 130 participants (62 female; mean age 31 ± 8.7;
age range 21 - 50), deHollander_7T - 20 participants (10 female; mean age 26 ± 2.6;
age range 22 - 32), Isherwood_7T - 37 participants (20 female; mean age 26.3 ± 5.6;
age range 19 - 39), and Miletic_7T - 17 participants (9 female; mean age 23.7 ± 3.2).
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Table 6.1: The principal MR acquisition parameters of the functional scans for each dataset.
Dataset TR (ms) TE (ms) Voxel size (mm) FOV (mm) No. slices GRAPPA
Aron_3T 2000 30 3.125 x 3.125 x 4 200 x 200 x 132 33 N/A
Poldrack_3T 2000 30 3 x 3 x 4 192 x 192 x 136 34 N/A
deHollander_7T 2000 14 1.5 x 1.5 x 1.5 192 x 192 x 97 60 3
Isherwood_7T 1380 14 1.5 x 1.5 x 1.5 192 x 192 x 128 82 3
Miletic_7T 3000 14 1.6 x 1.6 x 1.6 192 x 192 x 112 70 3

6.2.2 Scanning protocols

This section describes the MR acquisition procedure for each dataset. The main
acquisition parameters of the functionals scans can be found in Table 6.1, with a
detailed account of each dataset’s structural and functional scans in the following
paragraphs.

For the Aron_3T dataset, each participant was scanned on a Siemens Allegra
3T scanner. The session consisted of three functional runs of the SST and an
anatomical T1w image. The functional data was collected using a single echo
2D-echo planar imaging (EPI) BOLD sequence (TR = 2000 ms; TE = 30 ms; voxel
size = 3.125 x 3.125 x 4 mm; flip angle = 90°; Field of View (FOV) = 200 x 200 x
132 mm; matrix size = 64 x 64; slices = 33; phase encoding direction = A » P). A 1
mm isotropic T1w image was acquired during each session using the MPRAGE
sequence (TR = 2300 ms; TE = 2.1 ms; matrix size = 192 x 192).

For the Poldrack_3T dataset, each participant was scanned on a Siemens Trio 3T
scanner. The session consisted of one functional run of the SST and an anatomical
T1w image. The functional data was collected using a single echo 2D-EPI BOLD
sequence (TR = 2000 ms; TE = 30 ms; voxel size = 3 x 3 x 4 mm; flip angle = 90°;
FOV = 192 x 192 x 136 mm; matrix size = 64 x 64; slices = 34; phase encoding
direction = A » P). A 1 mm isotropic T1w image was acquired during each session
using the MPRAGE sequence (TR = 1900 ms; TE = 2.26 ms; matrix size = 256 x
256).

For the deHollander_7T dataset, each participant was scanned on a Siemens
MAGNETOM 7 Tesla (7T) scanner with a 32-channel head coil. The session
consisted of three functional runs of the SST, B0 field map acquisition (TR = 1500
ms, TE1 = 6 ms, TE2 = 7.02 ms), and an anatomical T1w image. The functional
data was collected using a single echo 2D-EPI BOLD sequence (TR = 2000 ms; TE
= 14 ms; GRAPPA = 3; voxel size = 1.5 mm isotropic; partial Fourier = 6/8; flip
angle = 60°; FOV = 192 x 192 x 97 mm; matrix size = 128 x 128; BW = 1446Hz/Px;
slices = 60; phase encoding direction = A » P; echo spacing = 0.8ms). Each run had
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an acquisition time of 13:27 min, totalling 40:21 min of functional scanning. A 0.7
mm isotropic T1w image was acquired during each session using the MP2RAGE
sequence (TR = 5000 ms; TE = 2.45 ms; inversions TI1 = 900 ms, TI2 = 2750 ms; flip
angle 1 = 5°; flip angle 2 = 3°; Marques et al., 2010).

For the Isherwood_7T dataset, each participant was scanned on a Siemens MAG-
NETOM TERRA 7T scanner with a 32-channel head coil. The session consisted of
two functional runs of the SST, top-up acquisition, and an anatomical T1w image.
The functional data was collected using a single echo 2D-EPI BOLD sequence
(TR = 1380 ms; TE = 14 ms; MB = 2; GRAPPA = 3; voxel size = 1.5 mm isotropic;
partial Fourier = 6/8; flip angle = 60°; FOV = 192 x 192 x 128 mm; matrix size =
128 x 128; BW = 1446 Hz/Px; slices = 82; phase encoding direction = A » P; echo
spacing = 0.8 ms). Each run had an acquisition time of 13:27 min, totalling 26:54
min of functional scanning. Subsequently to each run, five volumes of the same
protocol with opposite phase encoding direction (P » A) were collected (top-up)
for distortion correction. A 1 mm isotropic T1w image was acquired during each
session using the MP2RAGE sequence (TR = 4300 ms; TE = 1.84 ms; inversions TI1

= 840 ms, TI2 = 2370 ms; flip angle 1 = 5°; flip angle 2 = 6°; Marques et al., 2010).
For the Miletic_7T dataset, each participant was scanned on a Siemens MAG-

NETOM 7T scanner with a 32-channel head coil. The session consisted of three
functional runs of the SST, B0 field map acquisition (TR = 1500 ms, TE1= 6 ms,
TE2 = 7.02 ms), and an anatomical T1w image. The functional data was collected
using a single echo 2D-EPI BOLD sequence (TR = 3000 ms; TE = 14 ms; GRAPPA
= 3; voxel size = 1.6 mm isotropic; partial Fourier = 6/8; flip angle = 70°; FOV =
192 x 192 x 112 mm; matrix size = 120 x 120; BW = 1436 Hz/Px; slices = 70; phase
encoding direction = A » P; echo spacing = 0.8 ms). A 0.7 mm isotropic T1w image
was acquired during each session using the MP2RAGE sequence (TR = 5000 ms;
TE = 2.45 ms; inversions TI1 = 900 ms, TI1 = 2750 ms; flip angle 1 = 5°; flip angle 2
= 3°; Marques et al., 2010).

6.2.3 Procedure and exclusions

Participants that were not accompanied by a T1w anatomical image were auto-
matically excluded from the study as the image is required for registration during
preprocessing. In addition, the behavioural data of each participant from each
database were quality controlled on the basis of a specific set of exclusion criteria.
These criteria include (1) more than 10% go-omissions across all functional runs;
(2) a stopping accuracy of less than 35% or more than 65%; (3) a go-accuracy of
less than 95%; (4) mean signal respond RTs that were longer on average than
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go RTs (inconsistent with the standard race model). Based on these criteria, no
subjects were excluded from the Aron_3T dataset, 24 from the Poldrack_3T dataset,
three from the deHollander_7T dataset, five from the Isherwood_7T dataset, and
two from the Miletic_7T dataset. A further nine participants were excluded from
the Poldrack_3T dataset due to a lack of T1w image or a lack of SST data. As the
specific genders and ages of each participant in each dataset are not all available
due to General Data Protection Regulations (GDPR), we were unable to recalculate
participant demographics after exclusions. The final number of participants in
each dataset after screening is as follows: Aron_3T, 14 participants; Poldrack_3T,
97 participants; deHollander_7T, 17 participants; Isherwood_7T, 31 participants;
Miletic_7T, 15 participants. Therefore, the analyses in this paper are based on stop
signal data from 5 datasets, 174 participants and 293 runs.

6.2.4 Stop signal task (SST)

All datasets used a simple, two alternative choice stop signal paradigm. This
paradigm consists of two trial types, go trials, and stop trials. On each trial,
an arrow is presented on the screen in either the left or right direction (the go
stimulus). The participant presses the button corresponding to the direction of
the arrow. On a subset of trials (25%), a stop signal appears shortly after go
signal onset, indicating the participant should try to inhibit their movement and
not respond in that trial. In the auditory SST, this stop signal is presented as a
’beep’ sound. In the visual SST, this stop signal is presented as a change in visual
stimulus; for example, in the Isherwood_7T dataset, the circle surrounding the
arrow would change from white to red. The time between the presentation of the
go stimulus and the stop signal is defined by the stop signal delay (SSD). The SSD
is adapted iteratively during the task. Generally, if the participant responds during
a stop trial, the SSD is reduced by 50 ms on the next stop trial, meaning the stop
signal will appear earlier in the next trial and it will be easier for the participant to
inhibit their response. Conversely, if the participant stops successfully, the SSD
will increase by 50 ms and the stop signal will appear later in the next trial This
method of SSD adaptation is known as a staircase procedure and ensures that
each participant is able to inhibit their actions approximately 50% of the time.
Task performance in this paradigm is characterized by the race model (Logan
and Cowan, 1984). The model assumes a go process and a stop process race
independently and whichever finishes first defines whether a participant responds
or inhibits their actions. The go process is characterized by the observable go RT,
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Table 6.2: Task details for the SST in each dataset.

Dataset
Response
modality

Type
Stop signal
duration (ms)

No.
staircases

SSD
range (ms)

Total
no. trials

Stop
trials (%)

Aron_3T Hand, R Auditory 500 4 100 - 250 384 25
Poldrack_3T Hand, R Auditory 250 2 N/A 128 25
deHollander_7T Hand, L/R Auditory 62 4 0 – 2000 384 25
Isherwood_7T Hand, L/R Visual 300 1 50 – 900 200 25
Miletic_7T Hand, L/R Auditory 62 2 0 – 2000 342 25

whereas the stop process is characterized by the latent SSRT, which is estimated
based on the effects of the SSD throughout the task.

Although the SST employed in each dataset is similar, there are some differences
which are detailed in Table 6.2. We note here the most important differences
in design aspects of the SSTs, these include (1) Response modality, describing
the manual response and whether left (L), right (R) or both (L/R) hands were
used; (2) Type, describing whether the stop signal was auditory or visual; (3) Stop
signal duration, how long the auditory or visual stop signal was presented for;
(4) Number of staircases, describing the number of staircases used to track the
SSD of each participant during the task; (5) SSD range, describing the minimum
and maximum values that the SSD could be during the task; (6) total trial number,
the number of trials each participant performed over all runs; (7) Stop trials, the
percentage of overall trials that were stop trials (as opposed to go trials).

6.2.5 Behavioural analyses

For all runs within each dataset, median RTs on go and stop trials, the mean SSD
and proportion of successful stops were calculated. For each participant, the SSRT
was calculated using the mean method, estimated by subtracting the mean SSD
from median go RT (Aron and Poldrack, 2006; Logan and Cowan, 1984). Both
frequentist and Bayesian analyses methods were used to calculate the correlation
between mean SSRTs and median go RTs, as well as to test the statistical difference
between median failed stop RTs and median go RTs.

6.2.6 fMRIprep preprocessing pipeline

fMRIPrep was used to preprocess all acquired anatomical and functional data
(Esteban et al., 2020; Esteban et al., 2018). The following two sections describe, in
detail, the preprocessing steps that fMRIPrep performed on each dataset.
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6.2.6.1 Anatomical data preprocessing

A total of 1 T1-weighted (T1w) images was found within the input for each sub-
ject of each BIDS dataset. The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010),
distributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR_004757), and used
as T1w-reference throughout the workflow. The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.sh workflow
(from ANTs), using OASIS30ANTs as target template. Brain tissue segmenta-
tion of cerebrospinal fluid (CSF), white matter (WM) and grey matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823,
Zhang et al., 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer
6.0.1, RRID:SCR_001847, Dale et al., 1999), and the brain mask previously esti-
mated was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical grey matter of Mind-
boggle (RRID:SCR_002438, Klein et al., 2017). Volume-based spatial normaliza-
tion to one standard space (MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration (ANTs 2.3.3) using brain-extracted
versions of both T1w reference and the T1w template. The following template
was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical tem-
plate version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym).

6.2.6.2 Functional data preprocessing

For each of the BOLD runs per subject (across all datasets), the following pre-
processing was performed. First, a reference volume and its skull-stripped ver-
sion were generated using a custom methodology of fMRIPrep. For datasets
where a distortion correction image was not acquired (Aron_3T and Poldrack_3T),
a deformation field to correct for susceptibility distortions was estimated based
on fMRIPrep’s fieldmap-less approach. The deformation field is that resulting
from co-registering the BOLD reference to the same-subject T1w-reference with its
intensity inverted (Wang et al., 2017). Registration is performed with antsRegis-
tration (ANTs 2.3.3), and the process regularized by constraining deformation to
be nonzero along the phase-encoding direction, and modulated with an average
fieldmap template (Treiber et al., 2016). For the deHollander_7T and Miletic_7T
datasets, a B0-nonuniformity map (or fieldmap) was estimated based on a phase-
difference map calculated with a dual-echo gradient-recall echo sequence, pro-
cessed with a custom workflow of SDCFlows inspired by the epidewarp.fsl script
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with further improvements in HCP Pipelines (Uğurbil et al., 2013). The fieldmap
was then co-registered to the target EPI reference run and converted to a dis-
placements field map (amenable to registration tools such as ANTs) with FSL’s
fugue and other SDCflows tools. For the Isherwood_7T dataset, a B0-nonuniformity
map (or fieldmap) was estimated based on two EPI references with opposing
phase-encoding directions, with 3dQwarp (Cox and Hyde, 1997; AFNI 20160207).
Based on the estimated susceptibility distortion, a corrected EPI reference was
calculated for a more accurate co-registration with the anatomical reference. The
BOLD reference was then co-registered to the T1w reference using bbregister
(FreeSurfer) which implements boundary-based registration (Greve and Fischl,
2009). Co-registration was configured with six degrees of freedom. Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) were estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD
runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde,
1997; RRID:SCR_005927). The BOLD time-series (including slice-timing correction
when applied) were resampled onto their original, native space by applying a
single, composite transform to correct for head-motion and susceptibility dis-
tortions. These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. Several confounding time-
series were calculated based on the preprocessed BOLD: framewise displacement
(FD), DVARS and three region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative motions, Power et al.,
2014) and Jenkinson (relative root mean square displacement between affines,
Jenkinson et al., 2002). FD and DVARS are calculated for each functional run, both
using their implementations in Nipype (following the definitions by Power et al.,
2014). The three global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors were extracted
to allow for component-based noise correction (CompCor, Behzadi et al., 2007).
Principal components are estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128 s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tComp-
Cor components are then calculated from the top 2% variable voxels within the
brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined
CSF+WM) are generated in anatomical space. The implementation differs from
that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD
space, the aCompCor masks are subtracted a mask of pixels that likely contain a
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volume fraction of GM. This mask is obtained by dilating a GM mask extracted
from the FreeSurfer’s aseg segmentation, and it ensures components are not ex-
tracted from voxels containing a minimal fraction of GM. Finally, these masks
are resampled into BOLD space and binarized by thresholding at .99 (as in the
original implementation). Components are also calculated separately within the
WM and CSF masks. For each CompCor decomposition, the k components with
the largest singular values are retained, such that the retained components’ time
series are sufficient to explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining components are dropped from
consideration. The head-motion estimates calculated in the correction step were
also placed within the corresponding confounds file. The confound time series
derived from head motion estimates and global signals were expanded with the
inclusion of temporal derivatives and quadratic terms for each (Satterthwaite
et al., 2013). Frames that exceeded a threshold of .5 mm FD or 1.5 standardised
DVARS were annotated as motion outliers. All resamplings can be performed
with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when avail-
able, and co-registrations to anatomical and output spaces). Gridded (volumetric)
resamplings were performed using antsApplyTransforms (ANTs), configured with
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,
1964). Non-gridded (surface) resamplings were performed using mri_vol2surf
(FreeSurfer).

6.2.7 Temporal signal to noise ratios (tSNRs)

Sequence sensitivity in BOLD fMRI can be approximated by the calculation of
the temporal signal to noise ratio (tSNR). While it is not possible discriminate the
exact source of noise causing temporal fluctuations in measured signal, they are
thought to arise from either thermal or physiological interference. To get a feel
for the image quality in different regions of the brain between datasets, we here
compared region of interest (ROI)-wise tSNRs. Using probabilistic atlases, we
took the mean of the ROI signal and divided by its standard deviation across time.
Each voxels contribution to the mean signal of the region was weighted by its
probability of belonging to the region While simple to calculate, tSNR comparison
between data of differing acquisition methods is less trivial. Here, we only correct
for the differences in voxel size between datasets. As spatial resolution is directly
proportional to MR signal, we divided these tSNR values by the volume of a
single voxel (Edelstein et al., 1986). tSNR was calculated using the exact same data
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used in the ROI-wise GLMs. That is, unsmoothed but preprocessed data from
fMRIprep.

6.2.8 fMRI analysis – general linear models (GLMs)

GLM analyses were computed at both a whole-brain voxel-wise and region-
specific level. A canonical double gamma hemodynamic response function (HRF)
with temporal derivative was used as the basis set for both methods of analysis
(Glover, 1999). The design matrix consisted of the three task-specific regressors
for each of the three experimental conditions; failed stop (FS) trials, successful
stop (SS) trials and go (GO) trials, six motion parameters (three translational and
three rotational) as well as DVARS and framewise displacement estimated during
preprocessing. The first 20 aCompCor components from fMRIPrep were used
to account for physiological noise (Behzadi et al., 2007). Following data prepro-
cessing through fMRIPrep, all data were high-pass filtered (cut-off 1/128 Hz) to
remove slow drift. Three SST contrasts were computed for both the whole-brain
and region of interest (ROI) GLMs: FS > GO, FS > SS and SS > GO.

6.2.8.1 Voxel-wise

Whole-brain analyses were computed using the FILM method from FSL FEAT
(version 6.0.5.2; Jenkinson et al., 2012; Woolrich et al., 2001 as implemented in
the Python package wrapper Nipype (version 1.7.0; Gorgolewski et al., 2011).
Run-level GLMs accounting for autocorrelated residuals were computed, the
results warped to MNI152NLin2009cAsym space, and subsequently combined
per subject using fixed effects analyses. Data for the whole-brain GLMs were
spatially smoothed using the SUSAN method with a full width half maximum
(FWHM) equal to the voxel size of the functional image (Smith and Brady, 1997).
Therefore, a 3.125 mm kernel was applied to the Aron_3T dataset, a 3 mm kernel
to the Poldrack_3T dataset, a 1.5 mm kernel to the deHollander_7T and Isherwood_7T
datasets, and a 1.6 mm kernel to the Miletic_7T dataset. These base-level kernels
were applied to the data used for the main statistical analyses. Group-level
models were subsequently estimated using FMRIB Local Analysis of Mixed Effects
(FLAME) 1 and FLAME 2 from FSL (Woolrich et al., 2001), taking advantage of
the fact that FLAME allows the estimation of different variances for each dataset.
Dummy variables were used as regressors to allow the categorization of data into
different datasets so that they could be estimated separately and then combined.
Statistical parametric maps (SPMs) were generated to visualize the resulting group-
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level models. The maps were corrected for the false discovery rate (FDR) using
critical value of q < .05 (Yekutieli and Benjamini, 1999).

6.2.8.2 ROI-wise

ROI analyses were then performed. Timeseries were extracted from each sub-
cortical region of interest using probabilistic masks provided by MASSP (Bazin
et al., 2020), except in the case of the putamen and caudate nucleus, which were
provided by the Harvard-Oxford subcortical atlas (Rizk-Jackson et al., 2011). Each
voxels contribution to the mean signal of the region was therefore weighted by
its probability of belonging to the region. Cortical regions parcellations were
provided by the Harvard-Oxford cortical atlas (Rizk-Jackson et al., 2011). These
timeseries were extracted from unsmoothed data so to ensure regional specificity.
ROI analyses were computed using the FILM method of FSL FEAT. To do this, we
inputted each run for each participant in MNI152NLin2009cAsym space, where
the signal of each region was replaced with its mean extracted timeseries. Hence,
the signal within each region was homogenous on each given volume. ROIs were
therefore defined before implementing the ROI analyses. The regions include the
inferior frontal gyrus (IFG), primary motor cortex (M1), pre-supplementary motor
area (preSMA), caudate nucleus (caudate), GPe, GPi, putamen, SN, STN, Tha,
and VTA. Due to the restricted FOV of the deHollander_7T dataset, this dataset
was not used in the ROI-wise analysis of the M1 and preSMA regions. M1 and
preSMA ROI-wise results are therefore based only on the Aron_3T, Poldrack_3T,
Isherwood_7T, and Miletic_7T datasets. After the run-level GLMs were computed
using FILM, the same fixed effects analyses and subsequent mixed-effects analyses
used in the voxel-wise GLMs were performed.

6.2.9 Smoothing comparison

To further understand the impact of preprocessing on fMRI analyses, we computed
voxel-wise GLM results based on a more lenient smoothing kernel. To observe
the effect of smoothing on these analyses, we compared the results of our main
statistical analyses, using base-level kernel sizes, to the same data when all datasets
were smoothed using a 5 mm FWHM kernel. We chose to compared base-level
smoothing kernels to 5 mm as this was the kernel sized used in the Aron and
Poldrack (2006) study. To do this, the same voxel-wise GLM method was used as
described above.
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Table 6.3: Descriptive statistics of behaviour in the SST across each dataset. Standard errors are
given.

Dataset
Median go
RT (ms)

Median failed
stop RT (ms)

Go
omissions (%)

Go
errors (%)

Mean
SSRT (ms)

Median
SSD (ms)

Mean stopping
accuracy (%)

Aron_3T 423 ± 18 382 ± 11 .7 ± .4 .6 ± .2 196 ± 10 227 ± 17 53 ± 1
Poldrack_3T 466 ± 9 426 ± 8 .1 ± .04 .9 ± .1 187 ± 5 279 ± 11 52 ± .6
deHollander_7T 472 ± 24 439 ± 22 1.6 ± .5 .3 ± .1 222 ± 9 250 ± 22 54 ± 2
Isherwood_7T 626 ± 25 543 ± 22 1.9 ± .4 2.2 ± .4 251 ± 6 350 ± 30 54 ± 1
Miletic_7T 445 ± 17 414 ± 15 1.1 ± .5 .7 ± .2 215 ± 18 230 ± 23 50 ± 1

6.3 Results
6.3.1 Behavioural analyses

Table 6.3 summarizes the descriptive statistics of the behavioural data from each
dataset. The median failed stop RT is significantly faster within all datasets than
the median go RT (Aron_3T: p = 4.44e-5, BF = 590.75; Poldrack_3T: p < 2.2e-16, BF
= 3.06e+23; deHollander_7T: p = 1.21e-11, BF = 7.57e+8; Isherwood_7T: p = 2.75e-5,
BF = 897.41; Miletic_7T: p = .0019, BF = 22.39), consistent with assumptions of the
standard horse-race model (Logan and Cowan, 1984). Mean SSRT was calculated
using the mean method and are all within normal range across the datasets. The
mean stopping accuracy (near 50%) across all datasets indicates that the staircasing
procedure operated accordingly and successfully kept SSDs tailored to the SSRT
of participants during the task. In addition, median go RTs did not correlate with
mean SSRTs within datasets (Aron_3T: r = .411, p = .10, BF = 1.41; Poldrack_3T: r =
.011, p = .91, BF = .23; deHollander_7T: r = -.30, p = .09, BF = 1.30; Isherwood_7T: r =
.13, p = .65, BF = .57; Miletic_7T: r = .37, p = .19, BF = 1.02), indicating independence
between the stop and go processes, an important assumption of the horse-race
model (Logan and Cowan, 1984).

6.3.2 tSNRs

To observe quantitative differences in signal quality between the datasets, we first
calculated ROI-wise tSNR maps of the unsmoothed data. In Fig. 6.1 we show
both the corrected and uncorrected tSNR values for five ROIs. As the tSNR values
across each hemisphere were similar, we opted to take the mean across both. The
corrected tSNR values display the clear benefit of 7T acquisition compared to 3T
in terms of data quality. In the cortical ROIs, the 7T datasets appear to perform
equally well, though when zooming in on subcortical ROIs, the deHollander_7T
and Miletic_7T datasets display superiority. The uncorrected tSNR values paint a
different picture. These tSNRs are even across all the datasets, with the exception
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Figure 6.1: Corrected and uncorrected tSNR values for five ROIs over all datasets. The values
are derived from the mean tSNR values of both hemispheres. Error bars are standard errors.
Corrected tSNRs are equal to the uncorrected tSNRs divided by the volume of a single voxel.
IFG, inferior frontal gyrus; SN, substantia nigra; STN, subthalamic nucleus; Tha, thalamus; VTA,
ventral tegmental area.

of the Isherwood_7T dataset which appears to suffer, most likely due to its increased
multiband factor (Chen et al., 2015). It should be noted that interpretation of the
uncorrected tSNR values is difficult, due to the inherent proportionality of tSNR
and voxel volume (Edelstein et al., 1986). That is, the 3T datasets acquire data with
a voxel volume approximately ten times smaller than that of the 7T datasets and
therefore have an advantage when not correcting for this difference.

6.3.3 Voxel-wise GLMs

We calculated whole-brain voxel-wise GLMs using the canonical HRF with a
temporal derivative to statistically observe the brain areas underlying behaviour
in the SST. The three trial types result in three possible contrasts: FS > GO, FS
> SS, and SS > GO. Due to the restricted FOV of the images acquired in the
deHollander_7T dataset, group-level SPMs display a limited activation pattern at
the most superior part of the cortex, as no data were acquired there for one dataset.
We first show the group-level SPMs of the overall contrasts of the SST across all
datasets (see Fig. 6.2), the SPMs for each contrast of each individual dataset can
be found in the appendix (supplementary Figs. E.1, E.2 & E.3). Significant BOLD
responses for the FS > GO contrast were found in the bilateral IFG, preSMA, SN,
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Figure 6.2: Group-level SPMs of the three main contrasts of the SST. Activation colours indicate
FDR thresholded (q < .05) z-values. Two sagittal, one axial, and one zoomed in coronal view are
shown. Coloured contour lines indicate regions of interest (IFG in white, M1 in grey, preSMA
in orange, Caudate in dark blue, Putamen in light blue, GPe in dark green, GPi in light green,
SN in pink, STN in red, thalamus in yellow, and VTA in black). The background template and
coordinates are in MNI2009c (1mm). FS, failed stop; SS, successful stop.

STN and VTA. It can be clearly seen that this contrast elicits the largest subcortical
response out of the three. The FS > SS contrast shows significant bilateral activation
in the IFG, STN, Tha and VTA. The SS > GO contrast shows significant activation
in the bilateral IFG and Tha.

6.3.4 ROI-wise GLMs

To further statistically compare the functional results between datasets, we then
fit a set of GLMs using the canonical HRF with a temporal derivative to the
timeseries extracted from each ROI. Below we show the results of the group-level
ROI analyses over all datasets (Fig. 6.3). Overall, these results are in line with the
group-level voxel-wise GLMs. To account for multiple comparisons, threshold
values were set using the FDR method, with a minimum z-score of 3.1 to ensure
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Figure 6.3: Group-level z-scores from the ROI-wise GLM analysis of included datasets. Thresholds
are set using FDR correction (q < .05), with a minimum threshold of 3.1. Regions that do not
reach significance are coloured white. Left and right hemispheres are shown separately, denoted
by ’-l’ or ’-r’, respectively. IFG, inferior frontal gyrus; M1, primary motor cortex; preSMA,
pre-supplementary motor area; GPe, globus pallidus externa; GPi, globus pallidus interna; SN,
substantia nigra; STN, subthalamic nucleus; Tha, thalamus; VTA, ventral tegmental area.

conservatism. For the FS > GO contrast, we found significant positive z-scores in
the bilateral IFG, preSMA, SN, Tha, VTA, left caudate, and right STN as well as
significant negative z-scores in the right M1. For the FS > SS contrast we found
significant positive z-scores in the bilateral preSMA, caudate, GPe, Tha, VTA, left
M1, putamen, SN, STN, and right GPi. None of our ROIs were significantly more
recruited during SS trials than FS trials. For the SS > GO contrast we found a
significant positive z-scores in the bilateral IFG and significant negative z-scores
in bilateral M1, GPe, GPi, putamen, and left Tha. Left/right differences in M1
may be explained by the differences in response modality between datasets (the
Aron_3T and Poldrack_3T datasets only used the right hand for responses). Upon
further inspection of the group-level data, left/right differences in M1 appears to
be driven by larger variance estimates of the left M1.

6.3.5 Smoothing comparison

To visualize the effect of spatial smoothing on voxel-wise GLMs, we computed SST
contrasts using base-level kernels and a kernel of 5 mm. The difference in group-
level SPMs for SS > GO contrast is prominent (see Fig 6.4). Comparisons for the
contrasts of FS > GO and FS > SS contrasts can be found in Supplementary Figure
E.4. If we were to make inferences based on the group-level SPMs calculated using
the 5 mm kernel, this study could potentially incorrectly conclude that both the
SN and VTA are significantly activated in SS trials compared to GO trials. Much
larger regions of significant activation can be seen in the 5 mm smoothed SPMs,
both cortically and subcortically. This comparison demonstrates the prominent
consequences that preprocessing pipelines can have on the overall analysis of
functional data.
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Figure 6.4: Comparison of group-level SPMs for the SS > GO contrast using different smoothing
kernels. SPMs resulting from GLMs computed on base-level spatially smoothed data can be seen
on the top row, with SPMs resulting from GLMs computed on data spatially smoothed with a
FHWM of 5 mm. Activation colours indicate FDR thresholded (q < .05) z-values. Two sagittal,
one axial, and one zoomed in coronal view are shown. Coloured contour lines indicate regions of
interest (IFG in white, M1 in grey, preSMA in orange, Caudate in dark blue, Putamen in light
blue, GPe in dark green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and VTA
in black). The background template and coordinates are in MNI2009c (1mm). FS, failed stop; SS,
successful stop.
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6.4 Discussion

The functional network underlying response inhibition in the human brain has
been a pinnacle research question in the cognitive neurosciences for decades. The
basal ganglia specifically have been implicated in broad movement control since
the early twentieth century (Wilson, 1912). However, the role of these subcortical
structures in successful response inhibition is unclear. Evidence for the role of
the basal ganglia in response inhibition comes from a multitude of studies citing
significant activation of either the SN, STN or GPe during successful inhibition
trials (Aron, 2007; Aron and Poldrack, 2006; Mallet et al., 2016; Nambu et al.,
2002; Zhang et al., 2019). Here, we provide evidence that the canonical inhibition
pathways, both indirect and hyperdirect, may not be recruited during successful
response inhibition during the SST. We expected to find increased activation in
the nodes of the indirect pathway (e.g., the STN, SN, GPe) during successful stop
compared to go or failed stop trials, but we could not find evidence for this.
Instead, we find a large recruitment of subcortical nodes, including the SN, STN,
Tha, and VTA during failed stop trials (when compared to go trials). Due to
the larger degree of positive BOLD responses in subcortical structures (SN, STN,
Tha, and VTA) in the FS > GO and FS > SS contrasts, there is an indication that
successful inhibition does not rely on the recruitment of these nodes. Moreover,
it appears that failing to inhibit one’s action drives the utilisation of these nodes,
pointing to the need to ascribe a separate function to these networks.

These results are in contention to previous fMRI studies of the stop signal task
as well as an array of studies using different measurement techniques such as
local field potential recordings (Alegre et al., 2013; Benis et al., 2014; Wessel et al.,
2016c). Furthermore, FS trials have been relatively understudied, as they do not
cleanly reflect the inhibition network that is rightly the main area of attention. It is
likely that the inhibition network is at least partially active even when inhibition
is unsuccessful. From both the voxel-wise and ROI-wise analyses it is clear that
the VTA plays a role in the mechanisms underlying FS trials. Investigation into
the specific role of the VTA and dopaminergic system in response inhibition has
led to conflicting results (Aron et al., 2003; Boonstra et al., 2005). Inhibition of the
VTA has been seen to increase the number of premature responses in a five-choice
serial reaction time task in rats (Flores-Dourojeanni et al., 2021), the VTA appears
to degenerate in Parkinson’s Disease (Alberico et al., 2015), and is associated with
reward uncertainty in response inhibition tasks (Tennyson et al., 2018). Feedback
in the SST is inherent in its design; a failure to stop simultaneously triggers the
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realization that an error was made, without the need for explicit task feedback.
Speculatively, a failure to stop could trigger nodes of the mesolimbic pathway in
response to this action error, as the VTA is known to respond to reward prediction
errors (Bayer and Glimcher, 2005; Eshel et al., 2015; Schultz et al., 1997).

This is not the first aggregatory study that has found limited activation of
basal ganglia regions when specifically looking at successful response inhibition
(Hung et al., 2018; Isherwood et al., 2021b; Zhang et al., 2017). Although, from our
literature search, this is the first study to take advantage of an array of unprocessed
open-access data. Now that it is becoming increasingly common for researchers to
make such detailed data available, it is beneficial for the research field to move
on from meta-analytical methods that use only summary measures of activation
profiles. Although, it should be noted, that canonical methods of meta-analysis still
provide advantages over more processing-intensive methods such as applied here.
Firstly, on the scale of five datasets, this methodology was applied and completed
relatively quickly, but standard meta-analyses can include tens if not hundreds of
studies, a feat that would be difficult to manage for the method described here.
Secondly, the sample reported here is somewhat biased, it includes only data that
were openly accessible in full, it is likely there are many more studies that would
be useful to answer the research question posited here. Simpler methods of meta-
analysis, where only coordinates or summary measures are needed to aggregate
data, benefit from having access to a much wider range of potential sources of
data. What we have been able to do here, even with a limited number of datasets,
is process all the data with the same set of criteria. We therefore benefitted from
sets of extremely well-vetted behavioural and functional data, that can have all
aspects of the datasets compared to one another. This allowed us to tightly control
aspects of the preprocessing pipeline that can affect later analyses steps, such as
distortion correction and smoother kernel sizes.

The consequences of spatial smoothing on statistical analyses are well known
and can have huge effects on group or subject-level inferences (Chen et al., 2018;
Mikl et al., 2008). Here, we have shown again the substantial effect smoothing can
have on the conclusions drawn from task-specific GLMs. Based on the results of
the smoothing comparison and the differences in optimal kernel sizes for each
dataset, ROI-analyses may offer superior statistical testing to that of voxel-wise
methods as you do not introduce a loss of specificity. ROI-wise methods also
have the added benefit of not needing to warp images from individual space to
common or group templates, which may also introduce a loss of specificity when
looking at smaller structures, such as those in the subcortex. However, ROI-wise
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methods are only as good as the predefined atlases used in the analysis. MRI may
benefit from high spatial resolution in comparison to other neuroimaging methods,
but there are still subpopulations of nuclei, such as those within the STN, that
may have different roles in response inhibition and are not easily distinguishable
(Mosher et al., 2021). MRI is of course also disadvantaged by its poor temporal
resolution, a dimension that hinders the ability to dissociate different mechanisms
occurring during the course of a trial (e.g., attention, detection of salient events;
Benis et al., 2016). Methodologies with enhanced temporal resolution, such as
electroencephalography (EEG), will also benefit from the wave of open-access
data and can focus on research questions that MRI currently cannot, including
disentangling the mixed cognitive processes underlying response inhibition.

The results presented here add to a growing literature exposing inconsistencies
in our understanding of the networks underlying successful response inhibition.
Based on the five datasets analysed, neither the indirect nor hyperdirect pathways
show a greater degree of activation on SS trials compared to GO trials, or indeed
compared to FS trials. It is evident that how response inhibition is implemented
in the human brain requires more attention. Adaptations of the classical SST
are already being deployed to aid in disentangling the role attention and signal
detection in overall response inhibition (Boecker et al., 2013; Bryden and Roesch,
2015). This paper serves as a proof of concept for methods of meta-analysis that
allow the unification of largely unprocessed or unreduced datasets and exemplifies
the huge opportunities that open-access data sharing can bring to the research
field. As more and more datasets are made publicly available, researchers will be
able to perform meta-analyses not only on summary data, but datasets with a rich
body of parameters and data points.
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General discussion

This thesis aimed to advance our knowledge of the human subcortex, with a
specific focus on functions related to motor and cognitive inhibition. I chose
to approach this research question in a holistic manner, by first focusing on the
structure of the deep brain, and fine tuning our understanding and maps of the
nuclei we aim to investigate.

Firstly, in chapter 2 we brought together the anatomical findings of twenty
different MRI archives to better understand the quality of data across the field. We
provided the first quantitative assessment of MR image quality across a range of
open-access structural MRI databases. The results demonstrated the extraordinary
performance of UHF MRI and the image quality it can provide. Although, image
quality is not the only factor researchers should look at when acquiring data of
their own; sample size, age-range and the number or type of contrasts are just
some of the many aspects one should consider. The chapter also highlights the
importance and necessity of open-access data in furthering our knowledge of the
structural properties of the human brain.

Chapter 3 builds on our interest in the anatomical properties of the human
subcortex. We explored the aging patterns of 17 subcortical regions, both large
and small using quantitative UHF MRI. Specifically, we investigated the size,
shape, and biophysical properties of these structures over the adult lifespan using
advanced modelling techniques that allowed us to estimate both their iron and
myelin content. This knowledge is of huge importance for tailoring MR sequences
to specific structures, accurately delineating structures at different ages and un-
derstanding which biophysical properties are part of normal aging and which
are potentially pathological. We found that some of these structures exhibited
large locational changes with increasing age, a factor that must be considered
when using generalized atlases. These studies focused on regions that constitute
part of the basal ganglia, a collection of nuclei evidenced to be involved in an
array of cognitive, motor, and limbic processes. Indeed, the number of studies
implicating its role in cognitive and motor inhibition is abundant (Albin et al.,
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1989; Aron, 2007; Aron et al., 2016; Aron and Poldrack, 2006; Chambers et al., 2009;
Guitart-Masip et al., 2011; Mink, 1996; Ridderinkhof and Van Der Molen, 1997;
Salami et al., 2014; Schmidt et al., 2020; Utter and Basso, 2008; Wessel and Aron,
2017; Wiecki and Frank, 2013). Iron accumulation and myelin degradation may be
a part of the normal aging process but they are also a common pathophysiology
of multiple neurodegenerative disorders such as Parkinson’s Disease and Hunt-
ington’s Disease (Andersen et al., 2014; Ward et al., 2014). Cognitive decline and
age also go hand in hand, but the causal relationship between these changes in
biophysical properties of the brain and cognition is difficult to quantify.

In chapter 4, we collate all the functional imaging results we could find within
a specific set of criteria pertaining to inhibition-related functions. The criteria
included a minimum spatial resolution, so to ensure voxels fit within smaller sub-
cortical structures; isotropic or near-isotropic data only, as anisotropy negatively
impacts anatomical accuracy; 3T imaging or above, as lower field strengths do not
supply the necessary signal at higher resolutions. Our results were unexpected,
the meta-analyses revealed little overlap between response inhibition and inter-
ference resolution across all samples. We were surprised to find an absence of
consistent subcortical activation across both inhibition subtypes, which speaks
to the difficulty of high sensitivity scanning of the human subcortex. Due to the
suboptimality of lower field strengths, it appears that increasing statistical power
by means of data aggregation may not be enough to find consistent subcortical
activation. The results of this study left many questions unanswered, in addition
to raising even more. We knew we could do more to answer these questions. After
this study, we thought we had taken inter-individual comparisons of inhibition-
related functions as far as they could go. In addition, we were motivated to build
upon the analysis by using both the neural and behavioural data to their full extent.
We believed using a model-based framework in an intra-individual manner would
allow us to fill the remaining knowledge gap.

In chapter 5 we explored response inhibition and interference resolution in our
own UHF MRI study, tailoring our imaging protocols to maximize data quality
in the subcortex. Both chapters 2 and 3 indicated that researchers should take
age-related structural changes in brain organization into account when investi-
gating the deep brain. As such, we ensured our sample comprised only of young
adults, aiming to minimize any deviations in structural locations of biophysi-
cal properties that may arise from age-related differences. Combining cognitive
modelling with high-resolution functional MRI we set out to find the overlaps
and differences between response inhibition and interference resolution, both
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in terms of observed behaviour and their neural implementations. Our results
indicate a disparity between the two cognitive processes, a finding that mirrors
previous inter-individual efforts investigating response inhibition and interference
resolution (Huang et al., 2020; Hung et al., 2018; Isherwood et al., 2021b; Tobia
et al., 2016). Interference resolution appeared to rely on nodes of the indirect and
hyperdirect pathway, whereas successful response inhibition did not. Considering
the array of studies implicating these pathways in successful response inhibition,
we were puzzled by the results.

Focusing on the contradictory imaging results of response inhibition we found
in chapters 4 and 5, chapter 6 used a novel method of meta-analysis to aggregate
stop signal data from five open-access datasets. We discussed the pitfalls of
standard meta-analytical methods, including the fact that they commonly use only
summary measures of activation profiles. Although this allows the unification of
data from a much larger sample of separate datasets, it misses out on a crucial
wealth of detailed and useful data points. We show that it is possible to gain
substantial power from using raw data, though this is limited by the rate at which
datasets are made open-access. This chapter again finds little evidence of indirect
or hyperdirect pathway activation during successful inhibition. Three chapters of
this thesis highlight a dissonance between current theories of response inhibition
and fMRI evidence.

Collectively, this work emphasizes the importance of data quality and both inter-
and intra-individual research. We have highlighted the difficulties of studying the
human subcortex in vivo, extended our structural understanding of the deep brain
across the adult lifespan, shown the benefits of tailored sequences for functional
investigation into the basal ganglia as well as underlined a knowledge gap in our
functional understanding of deep brain structures. Even though we are increasing
the percentage of subcortical nodes represented in MR atlases, it seems we have a
long way to go to fully understand the extent to which these regions are involved
in inhibition-related functions. In the discussion below, we build upon the results
of the studies in this thesis and consider their implications in light of other findings
in the research field.

In the first section I discuss how we have made strides towards charting the
uncharted, with a focus on the complexity of deep brain subregions and data
quality. In the second section, I return to our main research question: how are
inhibition-related functions implemented in the brain? I discuss where response
inhibition and interference resolution overlap, how standard paradigms can limit
the scope of our understanding of complicated psychological constructs, and the
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difficulty in the interpretation of functional imaging. In the section following,
I bridge the gap between our neural and behavioural findings by discussing
how latent modelling parameters can aid our interpretation of neural data and
vice versa. This discussion ends with a conversation on exciting new avenues of
research that complement the methods and findings of this thesis.

The structure of the human subcortex

Our understanding of the human subcortex is ever evolving. For now, the 455
structures cited throughout this thesis are our best estimate of how to separate
these densely packed regions. But this number is not set in stone. In the past,
structures have been defined by their visual differences and cytohistochemical
properties. We are now finding new ways of delineating these structures, including
using multi-modal approaches. Chapters 2 and 3 take advantage of this multi-
modal method to obtain novel insights into how some structures change over the
adult lifespan. Despite all of this, and other recent advancements in understanding
the structure of the human subcortex (Huang et al., 2022; Tian et al., 2020; Yu et al.,
2021), we are still left with a vast expanse of uncharted territory. Not only is the
representation of subcortical nuclei in MR atlases still at around 8% of the total
number of subcortical structures, but the number of regional subcomponents is
likely to continue to increase as our understanding grows.

For example, the thalamus is the largest structure in the subcortex, comprising
anywhere between five and 60 substructures, depending whether divisions are
based on functional or cytoarchitectural definitions (Fama and Sullivan, 2015;
Schmahmann, 2003). We are still far from representing this range of possible
subdivisions through MR atlases, with 26 being the largest number characterized
so far (Iglesias et al., 2018). Defining regional subcomponents is not an easy
feat. What even defines a functional subdivision and how we can orthogonalize
this is also subject to debate (Karachi et al., 2009; Miletić et al., 2022). Given the
number of studies investigating both structural and functional subdivisions of
the thalamus, it is easy to wonder why the structure is generally treated as a
single unit throughout the field of neuroscience, as we did here in Chapters 3, 4,
5 & 6. The thalamus is a diencephalic structure with connections to almost the
entire cerebral cortex that transcends almost all domains of cognition, motor, or
limbic functioning. There are two main reasons for why the thalamus, and other
subcortical structures, are treated as a single structure.
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One principal reason behind treating it as a single structure is most likely the
same reason as why the entire subcortex is difficult to image: contrast. At the
microscopic level, delineation of subcortical structures and substructures becomes
much easier due to obvious differences in cytohistochemical makeup. But, at
the mesoscopic level and with only a handful on MR contrasts to choose from,
it is near impossible to delineate (manually or automatically) these structures,
although QSM, T2⇤ and other quantitative methods, like those used in chapter 3,
make this delineation easier. On a standard T1w image it would not be obvious
that many of the structures are heterogenous. For the future then, in vivo MRI
would benefit from being informed by histological or other ex vivo methods (e.g.,
post mortem MRI). This type of methodology has already resulted in atlases that
progress our segmentation capacity of the human subcortex (Bazin et al., 2020;
Iglesias et al., 2018).

A second reason for this underrepresentation of thalamic subnuclei is also a
practical one: the sheer number of possible analyses. Voxel-based analyses may
still be the gold standard in the field, where the number of statistical tests for
a single contrast range from tens of thousands to millions, but this does not
come without its drawbacks. With increasing statistical tests comes an increased
sensitivity loss due to multiple comparison correction. We may be able to lower
the chance of type I errors with this method, but we also increase the likelihood of
type II errors. Our sensitivity to BOLD changes in the subcortex is already low, we
must therefore be careful to maintain as much sensitivity as possible, by avoiding
excessive comparisons. Luckily, with region of interest analysis (ROI) we can
easily reduce the number of statistical tests. In our study in chapter 5, 16 regions
(32 when including both hemispheres) were used in the ROI analysis. These 16
regions were selected due to previous research implicating their roles in one or
both tasks. With little previous research into the role of thalamic substructures in
inhibition-related functions, it was difficult to justify the addition of between 10
(both hemispheres) and 52 extra regions that we did not have specific hypotheses
on. We wanted to be conservative with the number of regions in our ROI analysis,
to preserve statistical power. This avenue of research is admittedly an exciting one
and with more time, a research line that would have benefitted the ambition of
this thesis. Indeed, in our voxel-based analysis in chapter 5 we did find evidence
that distinct substructures of the thalamus are involved in interference resolution
(see Fig 5.9). With chapter 5 being the first 7T comparison of response inhibition
and interference resolution, we have only just started casting light on subcortical
involvement in these processes. And with human subcortical research still in
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its infancy, the role of thalamic substructures in inhibition-related functions or
decision making in general constitutes very exploratory work. My hope is that
future work on this topic, which would be far more than a singular thesis in
itself, would allow a more confirmatory analysis of some thalamic substructures
in inhibition-related functions.

On the topic of conservatism, the work in chapter 2 could have benefitted
from a greater number of regional comparisons and larger sample size from each
database – a point made by reviewers in the submission phase of the paper. A
separate, equally accurate method would have been to take a percentage of the
sample size (e.g., 10%), and a minimum number of samples (e.g., five), for each
database. In practice however, this number of samples would become infeasible
for a singular rater such as myself. This was the same reasoning for why only two
regions from each individual were sampled, two regions (three when splitting the
caudate nucleus into hemispheres) already meant that 2010 regions were manually
localized, without including the test-retest analyses. In light of the test-retest
analyses validating our results, and the results of other papers showing a similar
trend across 3T and 7T imaging, you might be left wondering: Is there space for
lower field imaging in subcortical research? It should be obvious now that the
gain in signal from higher field imaging outweighs the cost to B0 inhomogeneities,
motion artefacts and specific absorption rate (SAR). In my opinion, there is only
one reason why standard neuroimaging research would benefit from 3T acquisition
over 7T, and it is an indirect one: cost. For some research lines the need for a large
quantity of data offsets the need for the highest data quality. As long as the data
quality is sufficient, capturing individual differences from an increased quantity
of data, especially in the human brain, can have its benefits. For example, the
industry standard for brain templates in the neuroscience field is the Montreal
Neurological Institute and Hospital (MNI) coordinate system. One could easily
argue that the advantages of using 152 individuals to create a template is more
applicable to the general structure of brain across the population than using higher
resolution data from a smaller sample. The cost of 7T is currently just too high to
maintain a large cohort where quantity can be prioritized.

The implementation of inhibition-related functions

A core finding of the work in this thesis is the apparent distinction between re-
sponse inhibition and interference resolution on the implementation-level in the
human brain, as evidenced in Chapters 4 and 5. Based on theoretical consid-
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erations we were expecting much more of an overlap between the two (Demp-
ster, 1993; Friedman and Miyake, 2004; Nigg, 2000). Our findings revealed that
neural overlap between the two inhibition-related functions was limited to the
bilateral insula, presupplementary motor area (preSMA), and right inferior frontal
gyrus (rIFG). These nodes are unlikely to be involved in response inhibition or
interference resolution specifically, but instead partake in more general roles.

The insula for example, has many potential functions, which are likely not
mutually exclusive. The region has been implicated in the maintenance of task-
specific rules (Dosenbach et al., 2008), maintenance of attention (Nelson et al.,
2010), salience processing (Uddin, 2015), and interoception (Craig, 2009). For
response inhibition specifically, the insula is thought to either aid through salience
detection or by slowing responses after salient events (Cai et al., 2014). Similarly
for interference resolution, the insula is most likely to aid in the detection of stimuli
that cause interference (Deng et al., 2018). A more specific role is theorized for
the preSMA, namely that it underlies the ability to adjust response thresholds
(Cavanagh et al., 2011; Mulder et al., 2014). Indeed, model-based efforts have
shown that trial-to-trial changes in decision threshold estimates correlate with
trial-to-trial fluctuations in BOLD activity in the preSMA (Maanen et al., 2011).
Wolpe et al. (2022) compared the SST performance of an adult male with a preSMA
lesion to a group of healthy volunteers. They found that the lesioned patient
had a slower SSRT than healthy controls, but a faster go RT. Although only a
case-study, it provides further compelling evidence for the role of the preSMA in
the setting of response thresholds. In response inhibition, the preSMA could adjust
the thresholds defining the finishing times of the go and stop processes, while
during interference resolution it could do the same for the different choice options.
The IFG has been the region most implicated in response inhibition, though its
exact function has been the subject of debate for almost two decades (Aron et al.,
2004; Hampshire, 2015). Although consistently cited as a node of the response
inhibition network, it is implicated in a wide-range of tasks (Duncan et al., 2000;
Hampshire et al., 2007; Shallice et al., 2008).

I would like to tell you that our results have given an unequivocal answer to
the role of these nodes in inhibition-related functions. But alas, we too here are
hindered by the limited temporal resolution of fMRI, and for response inhibition,
limited by the experimental design of the classical SST. The disentangling of within-
trial cognitive or motor processes is not something fMRI lends itself well to; tem-
poral resolution in this method has quite a way to go. Since we cannot disentangle
processes of the classical SST during a single trial, we have another option: change
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the paradigm. As previously mentioned, attentional and inhibitory processes are
muddled during the classical SST. An alternative is a related paradigm called the
stimulus-selective SST (Sebastian et al., 2016; Sebastian et al., 2017; Sharp et al.,
2010). As well as the usual go and stop trials, an additional attentional capture (ac)
trial type is presented. If on a stop trial, participants are instructed to inhibit their
actions when they see a coloured circle (e.g., red), on an ac trial, participants are
instructed to continue responding when they see a differently coloured circle (e.g.,
blue). The point of this setup is to induce the detection of a salient signal (which
occurs on any trial that is not a go trial), but not induce the inhibition mechanism.
This class of SSTs are not novel, but unfortunately are difficult for functional
imaging studies due to the number of trials required to acquire sufficient data
points for all trials. The sweet spot of classical SST configuration is around 3:1 of
go:stop trials (Verbruggen et al., 2019). Many studies using the stimulus-selective
SST have configured their tasks as roughly 2:1:1 of go:stop:ac trials (Sebastian et al.,
2016; Sebastian et al., 2017; Sharp et al., 2010). While this may seem in line with
recommendations, it removes an important aspect of the classical SST: the overall
salience of non-go trials. The more often stop trials are presented within an SST, the
more likely it is for unfavourable strategies to arise, such as waiting for the stop
signal to occur to increase the likelihood of successfully inhibiting one’s actions
(Verbruggen et al., 2013). Such a strategy biases SSRT estimates and violates the
assumptions of the horse-race model. It is not a massive leap to assume that this
rationale would apply to dynamics within a stimulus-selective type SST as well.
Until a time where fMRI repetition times are low enough and our methods of
signal deconvolution are advanced enough that we can align the speed of trial
lengths to that of standard behavioural experiments, it is difficult to employ such
variants to the same extent as the classical SST. Even so, I have high hopes that
such variants will aid our understanding of the core mechanisms underlying the
full spread of cognitive and motor processes occurring during response inhibition.

It could be said that due to the sheer amount of research suggesting the contrary,
our results of response inhibition may be invalid. But these results are not an
isolated event, they are in fact replicating the results of two previous 7T studies
(Hollander et al., 2017; Miletić et al., 2020). I see two possible interpretations
of the results presented here. The first, is that subcortical constituents of the
hyperdirect pathway (e.g., STN, SN and GPe) are just not required for successful
motor inhibition, and that previous fMRI research has found aberrant activation
here. The second, is that these regions within the subcortex have an incomparable
hemodynamic response function to that of the cortex, and we are missing a key
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piece of information leading to an abnormal activation pattern in our data. As
shown in our smoothing kernel comparison in chapter 6, it is possible that lib-
eral preprocessing steps could explain at least some of the subcortical activation
patterns seen in previous studies. This of course though does not explain the
ocean of research implicating the STN in successful response inhibition, either
directly through single unit or LFP recordings in humans and animals or indirectly
through DBS in Parkinson’s patients (Alegre et al., 2013; Bastin et al., 2014; Benis
et al., 2014; Obeso et al., 2011; Ray et al., 2009; Schmidt and Berke, 2017; Wessel
et al., 2016c; Wildenberg et al., 2006; Wouwe et al., 2017).

These conflicting results are difficult to explain. While we do not provide
evidence that the hyperdirect pathway is involved in successful response inhibition,
we also cannot rule it out. We, as cognitive neuroscientists, are left with the
complex task of interpreting the BOLD response of fMRI. Where, an increase in
BOLD signal most likely reflects underlying neural activation, but a lack of observed
BOLD signal (especially in the subcortex), in no way suggests a lack of underlying
neuronal activation (Lowe et al., 2000). Even at 1.5 mm isotropic resolution we are
certainly missing patches of activation of entire structures or their subcomponents,
due to a lack of observable signal. There is no obvious statistical answer to how
many voxels you need within a structure to be able to say you have a valid signal,
that is specific to that region. Attempting to answer this question becomes even
more difficult when you take partial voluming or anisotropic voxels into account.
What we can say, is that four voxels are not sufficient. To make progress on
this problem, future work validating the correlation between BOLD signal in the
subcortex and neural activity is necessary, in addition to validating the correlation
between BOLD signal and LFP recordings.

The findings pertaining to failed response inhibition trials are similarly difficult
to interpret. Indeed, the mechanisms behind, and the limbic or cognitive conse-
quences of failed stops are difficult to define. Which BOLD response patterns
reflect which psychological construct is the difficult question. Most simply, the
neural activation may just reflect a stop process that does not reach fruition. In
my opinion, while neural activation may partly reflect this mechanism, it is likely
muddled with more complex processes, such as error processing, frustration, or
some type of updating mechanism. This may explain the observed activation of
the VTA during failed stop trials, which is known to be involved in prediction
and error processing (Fiorillo et al., 2003; Schultz et al., 1997). Even though the
stop signal in the SST is pseudo-randomized and cannot be accurately predicted,
the brain is a predictive machine (Friston, 2010). It may be that individuals do
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in some way attempt to predict the presentation of the stop signal, and failure
to stop or failure to prime the stop process properly results in some type of pre-
diction error. In addition to failed response inhibition, we also found that the
VTA was active during interference resolution, a novel finding. Although the
VTA has not previously been implicated using fMRI specifically, the impact of the
dopamine system on interference resolution has been investigated before, albeit
mostly indirectly. Using a dopamine antagonist, Rabella et al. (2016) found that
hindering the dopamine system negatively impacted performance in a Flanker
task. Additionally, electrophysiological recordings in monkeys have explicitly
implicated the VTA during interference resolution (Matsumoto and Takada, 2013).
How exactly the VTA moderates aspects of attention, reward or error processing is
unknown. The involvement of the dopaminergic system in interference resolution
and in failed response inhibition is therefore a key finding of this thesis, and points
to an underlying mechanism not concretely explored in the research field.

The computation of inhibition-related functions

It is evident from chapters 4 through 6 that inhibition-related functions are diver-
gent on an implementational level. Based on the results in chapter 5, it is also
evident that there is no obvious association between them on a computational
level. We presented here the first formal model of behaviour during the MSIT, as
well as the first model-based approach to this paradigm. We also built upon previ-
ous model-based efforts for the SST (Aron and Poldrack, 2006; Logan and Cowan,
1984; Matzke et al., 2013). A key finding was evidence for the involvement of the
anterior cingulate cortex (ACC) and IFG in resolving interference. Activation in
both regions has long been seen (Botvinick et al., 1999; Bush et al., 1998; Jimura
et al., 2009; Nee et al., 2007), but their correlation with drift rate parameters is
novel. But does this mean that these two regions, or one of these two regions, is
actually encoding evidence accumulation? Unfortunately, such a question is out of
the realms of the methods used in this thesis. The correlation does indicate to us
that the regions are involved in the process of evidence accumulation. This could
mean that one, or both, regions implement the accumulation of evidence towards
a specific choice or that they are part of a network that supports different aspects
of the accumulation process. It could also be that via the transfer of information
during the decision-process, that parts of the accumulation process are reflected in
nodes downstream to the accumulation region, which can perform their function
based on the evidence passed to them. The choice that is in the end made, is likely
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a result of a combination of multiple processes, some co-occurring, some sequen-
tial. The ACC specifically, may play a role in the tracking of uncertainty in which
response to select (Heekeren et al., 2008; Shenhav et al., 2018). Within our cognitive
model, higher differences in drift rate between the congruent and incongruent
conditions of the MSIT suggest more susceptibility to cognitive interference. In
this sense, our results are in line with previous research suggesting that the ACC
in some way signals the presentation of interference, and the interference intensity
(Botvinick et al., 2001). It is however becoming apparent that different subregions
of the ACC may have distinct functions (Buchsbaum et al., 2013; Shenhav et al.,
2018). Future work will hopefully uncover the specific contribution of each ACC
subcomponent to the decision-process, where methods such as joint modelling
could provide assistance.

Generally, associations between neural and behavioural data (even behavioural-
behavioural data) are established through a two-stage process (Forstmann et al.,
2008). Firstly, we calculate summary measures of individual behaviour and their
neural counterpart separately, and then, we apply statistical tests to relate the two.
Moving away from this two-stage approach, Purcell et al., 2010 demonstrated
that neurophysiological data can be used to predict behavioural data. In a sense,
this approach was still one-way and does not allow neural and behavioural data
to be mutually informative on the holistic model. True joint modelling provides
a means to combine both sets of data into a single-model analysis, as well as
permitting models to be mutually informative. For example, by allowing parame-
ters of the model to covary, Turner et al. (2017b) constructed a framework where
behavioural and neural data could influence each other’s parameters in a bidirec-
tional manner. Therefore, instead of merely correlating the parameters estimated
for each cognitive model of the MSIT and SST, and their respectful neural data,
their relation could be estimated by means of a variance-covariance matrix. This
method provides a way to add another level of constraint to both the neural and
behavioural models. What results is a single model that estimates parameters that
are a compromise to each individual model, the best fit is defined through the
influence of both sets of data. Turner et al. (2017a) further provided an additional
advantage to this framework: dimensionality reduction. Estimating the entire
variance-covariance matrix has the advantage of estimating every and all possible
associations between parameters, allowing for exploratory analyses, but in many
cases can be redundant. Using a factor analysis on top of this approach, can help re-
move a dimension within the estimated parameters by collapsing related elements
into single latent factors. These methods are not yet easily implementable. My
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hope is that as the detail of experimentally recorded information grows, methods
such as these will aid in finding the currently unobservable structures within.

In contrast to the MSIT, estimated latent parameters within the SST did not
correlate with any brain regions previously implicated in response inhibition.
An obvious question one might ask themselves is: is SSRT reliable? Or, useful?
Are there other methods to estimate the latent behaviour of successful response
inhibition? The answer to this is complex. Accurate estimation of SSRT is based
on whole list of assumptions and practical considerations (Verbruggen et al.,
2019). There are many ways to estimate this latent parameter, but traditional non-
parametric methods likely produce biased estimates. For example, an important
aspect often overlooked is the necessity to take trigger failures into account. Failure
to do so often causes an overestimation of SSRT (Band et al., 2003; Matzke et al.,
2017). Trigger failures, times at which the stop process is not triggered on a stop
trial, are notoriously difficult to estimate. SSRT and trigger failures are thought to
underlie subtly different aspects of inhibitory control (Schachar and Logan, 1990;
Tannock et al., 1989). While we did take trigger failures into account in chapter 5,
this aspect of response inhibition was not intensely touched upon within this thesis.
Recent work has attempted to dissociate between the concepts of SSRT and trigger
failures more reliably, finding that although SSRT itself did not correlate with
behavioural measures of impulsivity, impulsivity did correlate with the estimated
probability of trigger failure (Skippen et al., 2019). This two process computational
outlook of response inhibition, together with the two process implementational
outlook of response inhibition (Diesburg and Wessel, 2021), adds to the growing
literature pointing to the complexity of global inhibitory control.

On top of these methods of SSRT estimation through cognitive modelling, recent
work has found a new way to estimate the latency of the stop process. Using a
more direct method, Raud and Huster, 2017 measured electromyography (EMG)
activity during the SST and observed the moment at which EMG activity collapsed
in the hand on a successful stop trial. This shows that it is possible to measure
the muscle related activity associated with a successful stop trial. This in a sense,
is a direct measurement of SSRT, as it shows the moment that stopping was
determined in the motor domain. Not only could this eventually provide trial to
trial estimations of SSRT directly, but this could help dissociate between the motor
and cognitive components of successful stopping.
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Future directions

In addition to the variations of the SST, issues with BOLD signal and joint mod-
elling techniques described above, there are further steps the field can take to aid in
the understanding of inhibition-related functions in the human subcortex. We have
come a long way since Karl Pearson’s first use of formal techniques to combine
data en masse (Pearson, 1904). Although this endeavor was modest compared to
modern standards and without the integration of uncertainty estimates, it was the
first step in the development of a noteworthy statistical practice. It was not until
the late 70’s that the term ‘meta-analysis’ was coined (Glass, 1976). Even with all
the progress made since then (e.g., activation likelihood estimation, multivariate
pattern analysis, seed-based d mapping, to name a few), I believe we are heading
towards an even larger leap forward in methodology. As shown in chapter 6, with
suitable hardware and access to pre-acquired research data it is now possible to
aggregate full datasets, as opposed to only summary measures, which has been the
norm within the field of functional imaging for over 20 years (Farah and Aguirre,
1999). This method was only the first example, much methodological research is
required to optimize the use of GLM-based meta-anlayses. We will of course never
be able to get around the issues of differences in data quality, inconsistencies in
analyses pipelines or acquisition parameters, or other variabilities in experimental
design between samples. Still, the possibility of accounting for the full wealth
of data is appealing, moving on from its mere central tendency to the entire dis-
tribution. With enough data, the variability within datasets might actually be a
good thing. Any one acquisition method, experimental design or preprocessing
pipeline comes with a range of biases. By aggregating complete datasets from
various sources, we likely find results closer to the ground truth, or at least our
best estimate of it. This thesis depended on such aggregation and would not
have been possible without the movement towards data sharing. Three of the
five chapters presented here necessitated the accessibility of previously acquired
datasets. Although the current standard of meta-analyses has been extraordinarily
helpful to the field, it is my hope that we will continue to develop meta-analytical
methods such as those used in chapter 6, where we can take full advantage of the
dense research data collected globally.

Another fruitful direction of research is the advancement of acquisition tech-
niques for imaging the subcortex. Structural imaging of the subcortex has made
leaps forwards in recent years, as evidenced in this thesis. Functional imaging on
the other hand, still has a longer way to go. Further increases in field strength is
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a clear contender for advancing both imaging types. 9.4T systems are likely the
next set of scanners to be clinically certified, even if this step is not yet around
the corner. The increase from 7T to 9.4T has the propensity to double the BOLD
contrast-to-noise ratio, allowing for unprecedented spatial resolutions (Budde
et al., 2014). The downside is that radio frequency inhomogeneities becomes a
serious problem above 3T (Van de Moortele et al., 2005). Additionally, although
changes in magnetic susceptibility and relaxation times have their advantages
at higher field strengths, they also cause more complex issues (e.g., signal loss,
distortions; Frahm et al., 1994; Jezzard and Balaban, 1995). While we here have
raised the cortico-centric nature of the field of neuroscience, it is important to note
that we must find methods that focus on the brain holistically and not just shift our
focus onto the other. Problematically, methods that allow accurate characterization
of the subcortex can negatively impact the acquisition of cortical regions, and
vice versa. Customized coil designs do show promise here though (Wiggins et al.,
2012). Since increasing the number of detector elements or size of surface coils has
shown little promise in the deep brain, the development of dipole antennas may
provide hope by delivering greater signal penetration (Raaijmakers et al., 2011).

On top of increasing the efficiency of our imaging acquisition methods, another
exciting avenue is opening: focused ultrasound. Due to the location of the subcor-
tex, cortical methods of brain stimulation and inhibition do not work. Therefore,
cortical studies of inhibition-related functions that make use of transcranial mag-
netic stimulation or transcranial direct current stimulation are numerous (Kwon
and Kwon, 2013; Wildenberg et al., 2010; Yu et al., 2022), while the subcortex has
been limited to only invasive methods such as deep brain stimulation or optoge-
netics (Bari et al., 2020; Ray et al., 2009). With the advent of focused ultrasound,
there comes a way to stimulate or inhibit spatially specific areas of neural tissue
from afar (Blackmore et al., 2019), as well as the opportunity to study healthy
populations in vivo. The ability to modulate specific regions of the brain while
performing a task gives an immensely useful dimension of information about the
regions function. I hope that future research will drive the use of methodologies
such as these to finally allow the modulation of subcortical structures in vivo in a
non-invasive way.

With this thesis I have made steps in the right direction, but how exactly the
brain implements inhibition-related functions still eludes us. I am optimistic that
the future will bring methodologies that allow us to understand all three levels
of analysis of both response inhibition and interference resolution. My hope is
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that the work presented here aids in the understanding of these functions and in a
historically underrepresented area of the brain: the subcortex.
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A.1 Supplementary results
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Figure A.1: Bar chart comparing the raw and normalized SNR measurements. Values are ordered
from lowest to highest, based on the raw SNR measurements. Error bars indicate standard error
of the mean.
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Table A.3: SNR and CNR estimations for the contrasts offered by each database. All qualitative
images are reported as normalized values, all quantitative images are reported as raw. SNRCC
indicates the SNR of the corpus callosum and SNRCN indicates the mean SNR of both caudate
nuclei. n, number of participants used for calculation; MPRAGE, magnetization prepared rapid
gradient echo; MP2RAGE, magnetization prepared 2 rapid acquisition gradient echoes; ME,
multiple echo; FLASH, fast low angle shot; SPACE, sampling perfection with application of
optimized contrasts using different flip angle evolutions; FLAIR, fluid attenuation inversion
recovery; IR, inversion recovery; TSE, turbo spin echo; TFE, turbo field echo; sb, slab; un, unpro-
cessed; pro, processed; T1w, T1-weighted; qT1, quantitative T1 map; T2w, T2-weighted; PDw,
proton density-weighted; T2*w, T2*-weighted; qT2*, quantitative T2* map; QSM, quantitative
susceptibility mapping; SWI, susceptibility weighted image.

Database Sequence Contrast SNRCC (± SEM) SNRCN (± SEM) CNR (± SEM) n Resolution (mm)
250 MPRAGE T1w-un 292.3 ± 15.0 198.3 ± 14.6 93.5 ± 6.7 1 0.25 x 0.25 x 0.25

MPRAGE T1w-pro 570.4 ± 123.5 368.0 ± 53.5 93.7 ± 14.6 1 0.25 x 0.25 x 0.25
Age-ility MPRAGE T1w 31.4 ± 2.0 20.4 ± 2.0 5.8 ± 0.9 5 1 x 1 x 1
AHEAD MP2RAGEME T1w 83.4 ± 6.5 39.5 ± 1.3 28.5 ± 1.3 15 0.64 x 0.64 x 0.7

MP2RAGEME qT1 24.2 ± 2.4 19.6 ± 1.1 6.0 ± 0.6 15 0.64 x 0.64 x 0.7
MP2RAGEME QSM 10.0 ± 2.6 16.0 ± 1.5 8.7 ± 1.8 15 0.64 x 0.64 x 0.7
MP2RAGEME PDw 97.5 ± 6.2 29.5 ± 2.4 1.7 ± 0.5 15 0.64 x 0.64 x 0.7
MP2RAGEME T2*w 77.7 ± 12.0 25.3 ± 2.6 0.3 ± 0.5 15 0.64 x 0.64 x 0.7
MP2RAGEME qT2* 10.6 ± 0.6 6.3 ± 0.4 0.3 ± 0.1 15 0.64 x 0.64 x 0.7
MP2RAGEME T1w-sb 157.1 ± 7.5 103.1 ± 5.7 37.4 ± 1.3 15 0.5 x 0.5 x 0.5
MP2RAGEME qT1-sb 15.4 ± 0.7 14.4 ± 0.7 4.3 ± 0.2 15 0.5 x 0.5 x 0.5
MP2RAGEME PDw-sb 147.8 ± 8.2 79.5 ± 6.4 8.3 ± 2.5 15 0.5 x 0.5 x 0.5
MP2RAGEME T2*w-sb 138.1 ± 21.1 83.8 ± 9.8 5.0 ± 1.7 15 0.5 x 0.5 x 0.5
MP2RAGEME qT2*-sb 8 ± 0.3 6.2 ± 0.4 0.8 ± 0.2 15 0.5 x 0.5 x 0.5

ATAG MP2RAGE T1w 118.6 ± 6.5 29.6 ± 1.4 19.6 ± 0.7 15 0.7 x 0.7 x 0.7
MP2RAGE qT1 23.7 ± 0.9 17.8 ± 0.6 6.2 ± 0.2 15 0.7 x 0.7 x 0.7
ME-3D-FLASH T2*w 128.5 ± 11.4 85.5 ± 10.6 2.8 ± 1.9 15 0.5 x 0.5 x 0.5
MP2RAGE T1w-sb 146.2 ± 9.1 47.9 ± 2.1 23.3 ± 1.3 15 0.6 x 0.6 x 0.6
MP2RAGE qT1-sb 23.8 ± 1.1 19.6 ± 0.7 4.9 ± 0.3 15 0.6 x 0.6 x 0.6

Cam-Can MPRAGE T1w 32.8 ± 2.7 24.1 ± 1.2 6.1 ± 0.5 15 1 x 1 x 1
SPACE T2w 11.8 ± 1.0 14.3 ± 0.7 2.7 ± 0.2 15 1 x 1 x 1

GSP MEMPRAGE T1w 15.8 ± 0.8 8.8 ± 0.7 3.6 ± 0.2 5 1.2 x 1.2 x 1.2
DLBS MPRAGE T1w 38.3 ± 4.2 19.4 ± 2.7 4.8 ± 0.7 15 1 x 1 x 1
HCPYA MPRAGE T1w-un 54.7 ± 5.6 40.4 ± 1.8 9.1 ± 1.3 5 0.7 x 0.7 x 0.7

SPACE T2w-un 26.7 ± 2.6 37.7 ± 3 11.5 ± 0.3 5 0.7 x 0.7 x 0.7
MPRAGE T1w-pro 87.8 ± 13.0 72.9 ± 12.9 16.3 ± 2.8 5 0.7 x 0.7 x 0.7
SPACE T2w-pro 32.8 ± 2.1 57.1 ± 8.5 14.6 ± 3.1 5 0.7 x 0.7 x 0.7

IXI - T1w 58.0 ± 3.6 33.7 ± 1.8 4.2 ± 0.4 15 0.94 x 0.94 x 1.2
- T2w 15.5 ± 1.4 17.7 ± 1 4.0 ± 0.2 15 0.9 x 0.9 x 1.2
- PDw 58.0 ± 3.9 35.1 ± 2 8.3 ± 0.4 15 0.9 x 0.9 x 1.2

Kirby 21 MPRAGE T1w 34.2 ± 1.8 16.7 ± 1.1 6.9 ± 0.6 5 1 x 1 x 1.2
FLAIR FLAIR 14.0 ± 1.6 8.0 ± 1.1 1.7 ± 0.3 5 1.1 x 1.1 x 1.1

MAASTRICHT MPRAGE T1w 96.9 ± 2.2 36.6 ± 3.3 18.5 ± 2.1 5 0.7 x 0.7 x 0.7
MPRAGE PDw 129.0 ± 11.0 85.3 ± 22.1 2.6 ± 0.9 5 0.7 x 0.7 x 0.7
MPRAGE T2*w 55.3 ± 8.9 37 ± 5 4.0 ± 1.6 5 0.7 x 0.7 x 0.7

MPI-CBS MP2RAGE T1w 271.3 ± 31.7 93.1 ± 15.9 42.4 ± 5.4 5 0.5 x 0.5 x 0.5
MP2RAGE qT1 24.7 ± 3.2 18.9 ± 2.9 5 ± 0.7 5 0.5 x 0.5 x 0.5
ME-FLASH T2*w 129.6 ± 24.1 83.9 ± 22 6.4 ± 2.5 5 0.5 x 0.5 x 0.5
ME-FLASH qT2* 9.1 ± 0.6 4.7 ± 0.8 0.1 ± 0.2 5 0.5 x 0.5 x 0.5

MPI-LMBB MP2RAGE T1w 26.6 ± 1.3 12.7 ± 0.3 6.4 ± 0.3 15 1 x 1 x 1
MP2RAGE qT1 17.2 ± 0.8 17 ± 0.4 5.9 ± 0.2 15 1 x 1 x 1
- FLAIR 81.7 ± 7.0 82 ± 5 .0 16.5 ± 1.4 10 0.49 x 0.49 x 1

MASSIVE 3D-TFE T1w 17.2 ± 1.2 10.6 ± 0.3 6.4 ± 0.3 1 1 x 1 x 1
3D-TSE T2w 21.9 ± 2.0 13.8 ± 1.8 2.2 ± 0.4 1 1 x 1 x 1
3D-IR-TSE FLAIR 15.9 ± 1.4 13 ± 1.2 2.6 ± 0.2 1 1 x 1 x 1

MSC - T1w 40.0 ± 2.0 26.6 ± 1.3 9.3 ± 0.2 5 0.8 x 0.8 x 0.8
- T2w 16.0 ± 1.5 23 ± 2.3 5.2 ± 0.7 5 0.8 x 0.8 x 0.8

NKI-RS MPRAGE T1w 44.5 ± 2.7 28.1 ± 1.0 7.8 ± 0.4 15 1 x 1 x 1
PTBP MPRAGE T1w 43.6 ± 3.6 28.2 ± 1.8 9.2 ± 0.7 5 1 x 1 x 1
RAIDERS MPRAGE T1w 28.9 ± 3.8 16.9 ± 1.6 8.8 ± 0.9 5 0.938 x 0.938 x 1
SALD MPRAGE T1w 35.1 ± 2.0 23.9 ± 0.8 6.0 ± 0.2 15 1 x 1 x 1
StudyForrest 3D-TFE T1w 75.2 ± 7.5 43.5 ± 4.1 18.5 ± 1.1 5 0.67 x 0.67 x 0.7

3D-TSE T2w 51.6 ± 7.8 66.0 ± 3.0 10.2 ± 1.0 5 0.67 x 0.67 x 0.7
3D Presto FFE SWI 72.0 ± 11.2 40.3 ± 1.9 1.2 ± 1.2 5 0.43 x 0.43 x 0.35
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B.1 Supplementary results

CNR comparisons

Under the assumption of mono-exponential signal decay, the expected contrast-to-
noise ratio (CNR) of an T2*-weighted single echo, echo planar imaging protocol,
per unit change in T2*, is given by (e.g. Poser et al., 2006; Posse et al., 1999):

CNR(TE, T2⇤) =
S0
s0

TE exp
�TE
T2⇤

(B.1)

where S0 and s0 are the signal and (temporal) variance, respectively, at echo
time TE = 0. In the following comparisons, we assume that S0 and s0 are the
same across structures and protocols. This assumption is unlikely to be true
for between-region CNR comparisons, as S0/s0 is typically lower in subcortical
regions compared to cortical regions in part due to the larger distance to the MRI
receiver coils. We ignore any potential between-region differences in the size of
the T2* changes that result from changes in the oxygenation levels. Under these
assumptions, CNR ratios can be used to compare the expected CNRs when using
echo time A to study region n with the expected CNR when using echo time B to
study region m:

CNR(TEA, T2⇤m)
CNR(TEB, T2⇤n)

=
TEA exp �TEA

T2⇤m

TEB exp �TEB
T2⇤n

(B.2)

First, we can compare the expected CNR in the red nucleus with the CNR in the
amygdala, both in 19 years old participants, using T2* values obtained through our
app (https://subcortex.eu/app). Filling in TEA = TEB = T2⇤amg = 0.04248 s
(i.e., in both protocols, we use an echo time optimized for the amygdala at 19 years
old), and T2⇤rn = 0.01825 s, we find CNR(TEA ,T2⇤rn)

CNR(TEB ,T2⇤amg)
= 0.265, implying the CNR in

the red nucleus is approximately 73.5% lower than in the amygdala with this echo
time. In practice, since S0/s0 is also likely to be lower in the red nucleus than in
the amygdala, the CNR ratio will be even lower.
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Second, we can estimate the effect of age-related decreases in T2*. The red
nucleus has an approximate T2⇤ = 0.01825 s at 19 years old, and T2⇤ = 0.0131 s at
50 years old. If an echo time of TEA = TEB = 0.01825 s is used for a participant
of 50 years old, then CNR(0.01825,0.0131)

CNR(0.01825,0.01825) = 0.6765, showing an approximately 32%
loss in CNR compared to the CNR that would be obtained with this echo time in a
participant of 19 years old.

Third, we can compare the expected CNR in the red nucleus at 19 years old
(T2⇤ = 0.01825 s) when using the optimal echo time TEA = 0.01825 s with the CNR
that would be obtained if an echo time is used that is optimal for the amygdala:
TEB = 0.04248 s. The ratio CNR(0.01825,0.01825)

CNR(0.04248,0.01825) = 1.621, showing that a substantial
CNR gain can be expected from optimising the echo time to meet the specific
requirements of that region.

Finally, we can compare the effect of adapting echo times to adjust for age-related
changes in T2*. Taking again the red nucleus as an example, the T2* decreases
from 0.01825 s to 0.0131 s between 19 and 50 years old. Suppose we analyze the
red nucleus in a 50 year old participant using the corresponding optimal echo time
(hence, TEA = T2⇤ = 0.0131 s), then, compared with using an echo time optimal
for young participants TEB = 0.01825 s, we find that CNR(0.0131,0.0131)

CNR(0.01825,0.0131) = 1.063.
Hence, adjusting for the age-related decrease in T2* leads to modest CNR gains.

In practice, changing the echo time may not always be possible due to hardware
limitations (e.g., the slew rate of the MRI gradients limits the minimum echo
time that can be achieved), and potentially requires undersampling of k-space
(e.g., using GRAPPA, SENSE, or partial Fourier) or bandwidth changes. These
additional changes will affect the protocols’ S0/s0, complicating direct comparison
between the expected performance of two candidate MRI protocols. Another
option is to use multi echo protocols, in which data is acquired at multiple echo
times, which can be optimized for multiple regions at the same time (Gowland and
Bowtell, 2007; Kundu et al., 2017; Miletić et al., 2020; Puckett et al., 2018). These
additional factors should be taken into account when developing an MRI protocol
in order to find the optimal trade-off between echo time settings and S0/s0.
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B.2 Supplementary figures and tables

Figure B.1: Leave-one-out re-validation of the MASSP algorithm. The boxplots show the percent-
age of improvement in parcellation accuracy of the version of MASSP in the current study (with
a second co-registration and an intensity normalization step) compared to the original MASSP
Positive values indicate better values for the current version. The dilated Dice overlap coefficient
is the Dice coefficient after dilating the masks by 1 voxel; as such, it provides a measure of overlap
while allowing for 1 voxel of uncertainty. For full details on these metrics, see Bazin et al. (2020).
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Figure B.2: Comparison between metrics obtained by manual delineation (x-axes) with metrics
obtained when using the improved version of MASSP to delineate structures. Rows indicate
volume, thickness, R1, R2*, and QSM. Circles are individual data points, straight lines are regres-
sion lines with 95% confidence intervals as the shaded area. Pearson’s correlation coefficients are
shown when the correlation was significant.
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Figure B.3: Illustration of the interactive app which allows for visualizing all data and age-related
change models. Top panel features a 3D mesh plot that includes all 17 subcortical structures
under investigation. The age slider can be used to visualize the age-related changes in center
of mass location (currently visible), or the median or interquartile range of iron, myelin, R1,
R2*, and QSM values, color-coded on the structures. Bottom panel features scatterplots of the
relation between age and twelve measures (median and interquartile range of myelin, iron,
R1, R2*, QSM, and thickness) for all structures. Optional captions are included, and the data
underlying the bottom panel can readily be downloaded as a csv file. The app can be accessed
via https://subcortex.eu/app
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Figure B.4: Matrix of total age-related change in all dependent variables (columns) for individual
structures (rows). Values indicate the summed absolute change between 19-75 years old. Negative
values indicate decreases. Standard errors were obtained by bootstrapping with 10,000 iterations
and are shown in parentheses. The ventricular system is assumed to have no iron or myelin
concentration and is excluded from analysis.
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Figure B.5: Age-related change in median iron for all structures. Equations are the parameterized
winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Figure B.6: Age-related change in IQR iron for all structures. Equations are the parameterized
winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Figure B.7: Age-related change in median myelin for all structures. Equations are the parameter-
ized winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Figure B.8: Age-related change in IQR myelin for all structures. Equations are the parameterized
winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Figure B.9: Age-related change in median thickness for all structures. Equations are the param-
eterized winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 =
male), and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the
winning model predictions
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Figure B.10: Age-related change in IQR thickness for all structures. Equations are the parameter-
ized winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Figure B.11: Age-related change in volume for all structures. Equations are the parameterized
winning models, with x referring to age, and s to sex (dummy coded; 0 = female, 1 = male),
and colons indicate interactions. Shaded areas indicate 95% confidence intervals of the winning
model predictions
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Table B.1: Iron estimates and corresponding qMRI values used for estimating linear model
Equation 3.1. For all regions that were divided in subregions in one but not the other source
(i.e. GP vs GPi/GPe; STR vs PUT/CAU; brain stem vs medulla oblongata; and cortical areas),
we entered all subregions in the OLS model, using the more specific values where possible, and
the global values otherwise. E.g., both GPe and GPi were in the model and shared iron values
(Hallgren and Sourander report only GP), but different qMRI values. To obtain qMRI values for
cortex, brain stem, and cerebellum, we parcellated our qMRI data using MGDM and CRUISE
Bazin et al. (2014) aFrom Hallgren and Sourander (1958); bFrom Metere and Möller (2018); cWe
used the qMRI metrics of the internal capsule here.

Iron (mg/100 g) QSM (ppm) R1 (Hz) R2* (Hz)

Brainstem 1.4a �0.000 486 0.808 37.959
Caudate 9.28a 0.012 768 0.66 48.64
Cerebellum 3.35a �0.000 078 0.505 34.069
Frontal cortex 2.92a �0.000 004 0.537 32.722
Frontal white 4.24a �0.020 322c 0.895c 36.294c

Globus pallidus ex-
terna

21.3a 0.042 671 0.848 85.107

Globus pallidus in-
terna

21.3a 0.047 246 0.869 77.739

Motor cortex 5.03a �0.000 004 0.537 32.722
Occipital cortex 4.55a �0.000 004 0.537 32.722
Putamen 13.32a 0.012 768 0.655 48.644
Parietal cortex 3.81a �0.000 004 0.537 32.722
Red Nucleus 19.48a 0.063 051 0.922 74.041
Substantia nigra 18.46a 0.058 915 0.862 72.284
Sensory cortex 4.32a �0.000 004 0.537 32.722
Thalamus 4.76a 0.002 828 0.758 38.228
Temporal cortex 3.13a �0.000 004 0.537 32.722
Ventricles 0.062b 0.005 553 0.341 6.259
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Table B.2: For all regions that were divided in subregions in one but not the other source (i.e. GP
vs GPi/GPe; STR vs PUT/CAU; brain stem vs medulla oblongata; and cortical areas), we entered
all subregions in the OLS model, using the more specific values where possible, and the global
values otherwise. E.g., both CAU and PUT were in the model with separate myelin values, but
identical qMRI values since the MASSP parcellation only reports STR. To obtain qMRI values for
cortex, brain stem, and cerebellum, we parcellated our qMRI data using MGDM and CRUISE
Bazin et al. (2014). aFrom Randall (1938); bFrom Metere and Möller (2018); cEstimated based on
the post mortem specimen; dWe used the qMRI metrics of the internal capsule here.

Myelin (%) QSM (ppm) R1 (Hz) R2* (Hz)

Brainstem 15.36a �0.000 486 0.808 37.959
Caudate 6.21a 0.012 768 0.655 48.644
Frontal cortex 5.08a �0.000 004 0.537 32.722
Frontal white 16.26a �0.020 322d 0.895d 36.294d

Globus pallidus externa 10.404c 0.044 293 0.813 84.875
Globus pallidus interna 10.404c 0.046 384 0.838 75.216
Parietal cortex 5.42a �0.000 004 0.537 32.722
Putamen 5.611c 0.012 768 0.655 48.644
Red nucleus 13.442c 0.059 001 0.894 72.979
Substantia nigra 7.404c 0.056 24 0.846 71.532
Subthalamic nucleus 14.423c 0.058 185 0.935 78.924
Thalamus 11.4a 0.002 828 0.758 38.228
Ventricles 0.002b 0.005 553 0.232 6.259
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Supplementary Materials to Chapter 4
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Appendix D

Supplementary Materials to Chapter 5

D.1 Supplementary results

Figure D.1: ROI analyses for all individual trial types in the SST. T-value significance are FDR
corrected (q < 0.05). Left hemisphere is shown in dark blue, and right in light blue. Asterisks
denotes significance. FS, failed stops; SS, successful stops; ACC, anterior cingulate cortex; IFG,
inferior frontal gyrus; Ins, insula; M1, motor cortex 1; pSG, posterior supramarginal gyrus; SMA,
pre-supplementary motor area; SPL, superior parietal lobule; CN, caudate nucleus; GPe, globus
pallidus externa; GPi, globus pallidus interna; PUT, putamen; RN, red nucleus; SN, substantia
nigra; STN, subthalamic nucleus; Tha, thalamus; VTA, ventral tegmental area. Orange denotes
cortical regions, red, subcortical.
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Appendix D

Figure D.2: ROI analyses for all individual trial types in the MSIT. Left hemisphere is shown in
dark blue, and right in light blue. Asterisks denotes significance. INC, incongruent; FLA, Flanker;
SIM, Simon; CON, congruent; ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; Ins,
insula; M1, motor cortex 1; pSG, posterior supramarginal gyrus; SMA, pre-supplementary motor
area; SPL, superior parietal lobule; CN, caudate nucleus; GPe, globus pallidus externa; GPi,
globus pallidus interna; PUT, putamen; RN, red nucleus; SN, substantia nigra; STN, subthalamic
nucleus; Tha, thalamus; VTA, ventral tegmental area. Orange denotes cortical regions, red,
subcortical.

Figure D.3: Group-level correlations between GLM betas on SS trials and SSRTs (top) and the FS >
SS contrast and SSRTs (bottom) in the SST when using the BEESTS method for SSRT estimation.
Significance is FDR corrected. r denotes the Pearson correlation, with p the corresponding
p-value. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue.
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Supplementary Materials to Chapter 5

Figure D.4: Group-level correlations between GLM betas on SS trials and SSRTs (top), the SS >
GO contrast and SSRTs (middle), and the FS > SS contrast and SSRTs (bottom) in the SST when
using the mean method for SSRT estimation. Significance is FDR corrected. r denotes the Pearson
correlation, with p the corresponding p-value. Left hemisphere is shown in dark blue. Right
hemisphere is shown in light blue.
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Appendix E

Supplementary Materials to Chapter 6

E.1 Supplementary results

Figure E.1: Group-level SPMs of the FS > GO contrast of the SST for each dataset. Activation
colours indicate FDR thresholded (q < .05) z-values. Sagittal (top), axial (middle) and a zoomed
in coronal (bottom) view are shown. Coloured contour lines indicate regions of interest (IFG in
white, M1 in grey, preSMA in orange, Caudate in dark blue, Putamen in light blue, GPe in dark
green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and VTA in black). The
background template and coordinates are in MNI2009c (1mm); slices are drawn through x = 51
(top), y = -13 (bottom), and z = 2 (middle).
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Figure E.2: Group-level SPMs of the FS > SS contrast of the SST for each dataset. Activation
colours indicate FDR thresholded (q < .05) z-values. Sagittal (top), axial (middle) and a zoomed
in coronal (bottom) view are shown. Coloured contour lines indicate regions of interest (IFG in
white, M1 in grey, preSMA in orange, Caudate in dark blue, Putamen in light blue, GPe in dark
green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and VTA in black). The
background template and coordinates are in MNI2009c (1mm); slices are drawn through x = 51
(top), y = -13 (bottom), and z = 2 (middle).

Figure E.3: Group-level SPMs of the SS > GO contrast of the SST for each dataset. Activation
colours indicate FDR thresholded (q < .05) z-values. Sagittal (top), axial (middle) and a zoomed
in coronal (bottom) view are shown. Coloured contour lines indicate regions of interest (IFG in
white, M1 in grey, preSMA in orange, Caudate in dark blue, Putamen in light blue, GPe in dark
green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and VTA in black). The
background template and coordinates are in MNI2009c (1mm); slices are drawn through x = 51
(top), y = -13 (bottom), and z = 2 (middle).
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Figure E.4: Group-level SPMs of the FS > GO and FS > SS contrasts using different smoothing
kernels. Activation colours indicate FDR thresholded (q < .05) z-values. Two sagittal, one axial,
and one zoomed in coronal view are shown. Coloured contour lines indicate regions of interest
(IFG in white, M1 in grey, preSMA in orange, Caudate in dark blue, Putamen in light blue, GPe
in dark green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and VTA in black).
The background template and coordinates are in MNI2009c (1mm). FS, failed stop; SS, successful
stop.
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Chapter 2

The code used in the analysis phase of this chapter can be found at https://
github.com/scottyish/Quantity-and-Quality-Code. Links to download
the data used in this chapter can be found in Table A.1.

Chapter 3

A prior version of the individual qMRI maps has been released as AHEAD
(Alkemade et al., 2020a) can be found at https://doi.org/10.21942/

uva.10007840.v1. All derived participant-wise and region-wise measures
can be downloaded from our app at https://subcortex.eu/app. All
code used to estimate the models and produce the figures can be found at
https://osf.io/mvdbe/.

Chapter 4

The code used in the methods and analysis phases of this chapter can
be found at https://github.com/scottyish/interference-resolution-
and-inhibition-A
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Chapter 6

The code used in this chapter can be found at https://github.com/
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264

https://uvaauas.figshare.com/articles/dataset/Investigating_Intra-Individual_Networks_of_Response_Inhibition_and_In
https://uvaauas.figshare.com/articles/dataset/Investigating_Intra-Individual_Networks_of_Response_Inhibition_and_In
https://uvaauas.figshare.com/articles/dataset/Investigating_Intra-Individual_Networks_of_Response_Inhibition_and_In
https://uvaauas.figshare.com/articles/dataset/Investigating_Intra-Individual_Networks_of_Response_Inhibition_and_In
https://uvaauas.figshare.com/articles/dataset/Investigating_Intra-Individual_Networks_of_Response_Inhibition_and_In
terference_Resolution_using_7T_MRI_data/22240393
https://github.com/scottyish/The-canonical-stopping-network
https://github.com/scottyish/The-canonical-stopping-network


Full publication list

⇤ indicates equal contributions
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English summary

The field of cognitive neuroscience has predominantly focused on studying the
cerebral cortex, often neglecting the subcortex, which accounts for about 25% of
the brain. This underrepresentation can be attributed to two main reasons. Firstly,
the subcortex was considered less important compared to the cortex, with the
belief that the cortex is responsible for all higher-level cognition. However, emerg-
ing evidence indicates that the subcortex plays a crucial role in various aspects of
human cognition and behavior. Secondly, the subcortex has been challenging to
study due to its deep location, small size, and close proximity to other structures.
Traditional neuroimaging techniques have struggled to provide high-resolution
images of the subcortex. However, recent advancements in neuroimaging and
neurophysiological methods have enabled us to explore the subcortex more pre-
cisely. As a result, there is growing recognition of the significance of the subcortex
in understanding the complexities of the human brain.

One specific area where the subcortex has garnered attention is its role in the
implementation of inhibition-related functions, namely response inhibition and
interference resolution. Response inhibition describes the ability to stop an already
initiated action, while interference resolution describes the ability to ignore or
suppress task-irrelevant information. Both processes are paramount for successful
functioning in day-to-day life. Subcortical diseases such as Parkinson’s, OCD and
dystonia often come hand in hand with deficiencies in one or both subtypes of
inhibition. The core objectives of the work within thesis are therefore twofold:
the first is to expand our knowledge on the structure and function of the human
subcortex, and the second is to investigate the neural and computational dynamics
of response inhibition and interference resolution. To achieve these objectives, an
interdisciplinary approach combining meta-analyses, structural and functional
ultra-high field magnetic resonance imaging (UHF MRI), and cognitive modelling
is employed. By combining these modalities, we can gain novel insights into how
these subtypes of inhibition are implemented in the brain and to what extent they
overlap on both behavioral and computational scales.

The thesis consists of several chapters that cover different aspects of the research.
In Chapter 2, the investigation begins by creating an up-to-date catalogue of MRI

267



English summary

databases focused on the neurotypical population. The purpose is to extract quan-
titative measures of image quality across these databases to gain a comprehen-
sive understanding of the current state of the field. This chapter highlights the
advantages of using UHF MRI for brain imaging, particularly when examining
the subcortex. It also discusses the trade-offs involved in parameters such as
acquisition time, spatial resolution, and SNR (Signal-to-Noise Ratio). Furthermore,
the chapter emphasizes the benefits of open-access data sharing and the choices
researchers face when balancing data quantity and quality.

Chapter 3 expands the structural investigation into the deep brain, specifically
focusing on age-related changes throughout adulthood and the composition of
17 subcortical structures. The chapter defines these regions in terms of their
iron and myelin contents, as well as their morphometry. By doing so, novel
insights are gained into the heterogeneity of these complex regions, including
changes in their location, which have significant implications for constructing
accurate atlases of the human subcortex. This chapter underscores the importance
of precisely mapping subcortical structures for both structural and functional
inference, and it outlines the wealth of information that can be obtained from
tailored MR sequences.

Moving on to Chapter 4, I delve into the existing literature on response inhibition
and interference resolution. This comprehensive review serves as a foundation
for the subsequent research conducted in the thesis. While the previous chapters
focused on the structural understanding of the subcortex, Chapter 4 shifts the
perspective towards investigating their functional counterparts. To achieve this,
I employed activation likelihood estimation to aggregate previous functional
studies related to inhibition. The results reveal a relatively incongruous functional
map, with significant differences observed in regions between different meta-
analyses and various subtypes of inhibition. While some questions regarding
inter-individual similarities and differences are addressed, many questions remain
unanswered.

Chapter 5 complements the inter-individual results of the meta-analysis by
investigating response inhibition and interference resolution at the intra-individual
level. Leveraging the insights gained from the previous chapters, we designed and
optimized a functional study that provides state-of-the-art structural, functional,
and behavioral data for both response inhibition and interference resolution tasks.
This methodology enables the comparison of different subtypes of inhibition while
minimizing individual differences through intra-individual comparisons. The
findings indicate that response inhibition and interference resolution tasks have
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relatively little behavioral overlap and are rooted in distinct networks within the
brain. Moreover, employing a model-based technique reveals differences in the
computational aspects of these two inhibition-related functions.

Chapter 6 represents the culmination of the exploration into response inhibition.
The outcomes of the functional and behavioral investigations are merged, and four
additional datasets related to stop signal task (SST) are reprocessed and reanalyzed
to shed light on the inconsistencies present within the field. Utilizing open-
access data, the research combines data points from multiple datasets, enabling a
comprehensive analysis beyond summary measures alone. Contrary to historical
models of response inhibition, the findings suggest that successful inhibition
does not solely rely on the canonical cortico-basal-ganglia pathways. Instead,
it is discovered that failures of response inhibition activate multiple subcortical
nodes that were previously theorized to underpin successful inhibition. These
findings, combined with other relevant literature, indicate the need for further
investigation into the networks that underlie successful response inhibition in the
human subcortex.

Finally, in Chapter 7, a comprehensive summary of the key findings presented
throughout the thesis is provided. The implications of these findings for future
research are elucidated, and a contextual discussion is presented in relation to re-
cent publications. This chapter serves as a conclusion, highlighting the significant
contributions of the research to the field of subcortical functioning and providing
directions for future studies.
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Het gebied van de cognitieve neurowetenschappen heeft zich voornamelijk gericht
op het bestuderen van de hersenschors, waarbij de subcorticale gebieden, die teza-
men ongeveer 25% van het volume van de hersenen beslaan, onderbelicht zijn
gebleven. Er zijn twee belangrijke reden waarom de subcortex historisch gezien
op de achtergrond is gebleven. Ten eerste werd de subcortex als minder belangrijk
beschouwd in vergelijking met de cortex, met de overtuiging dat de cortex verant-
woordelijk is voor alle hogere cognitieve functies. Er is echter steeds meer bewijs
dat de subcortex een cruciale rol speelt in verschillende aspecten van menselijke
cognitie en gedrag. Ten tweede was de subcortex moeilijk te bestuderen vanwege
de diepe ligging in de hersenen en de beperkte omvang van afzonderlijke gebieden.
Met traditionele beeldvormingstechnieken is het moeilijk om gedetailleerde en
hoogwaardige beelden van de subcortex te verkrijgen. Recente ontwikkelingen
in beeldvormingstechniek en neurofysiologische methoden maken het nu echter
mogelijk de subcortex nauwkeuriger te onderzoeken. Hierdoor wordt het belang
van de subcortex voor het begrijpen van de complexiteit van het menselijk brein
steeds meer erkend.

De subcortex heeft eerder aandacht gekregen vanwege zijn rol in de uitvoering
van functies met betrekking tot inhibitie, met name responsinhibitie en interferen-
tieresolutie. Responsinhibitie verwijst naar het vermogen om een reeds gestarte
handeling te stoppen, terwijl interferentieresolutie het vermogen beschrijft om
taakirrelevante informatie te negeren of te onderdrukken. Beide processen zijn
van cruciaal belang voor succesvol functioneren in het dagelijks leven. Ziekten
die verband houden met de subcortex, zoals de ziekte van Parkinson, OCD en
dystonie, vertonen vaak tekortkomingen in een of beide subtypes van inhibitie. De
hoofddoelen van dit proefschrift zijn tweeledig: ten eerste het verdiepen van onze
kennis over de structuur en functie van de menselijke subcortex, en ten tweede
het onderzoeken van de neurale en computationele processen onderliggend aan
responsinhibitie en interferentieresolutie. Om deze doelen te verwezenlijken
wordt een interdisciplinaire aanpak gehanteerd die meta-analyses, structurele
en functionele ultra-high field magnetische resonantiebeeldvorming (UHF MRI),
en cognitief modelleren combineert. Het combineren van deze methoden stelt
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ons in staat nieuwe inzichten te verkrijgen in hoe deze subtypes van inhibitie
worden geïmplementeerd in de hersenen en in welke mate ze overlappen, op
zowel gedrags- als computationeel niveau.

Het proefschrift bestaat uit verschillende hoofdstukken die verschillende
facetten van het onderzoek behandelen. In hoofdstuk 2 begint het onderzoek
met het samenstellen van een actueel overzicht van bestaande MRI-databases
gericht op de neurotypische populatie. Het doel hierbij is het verkrijgen van
kwantitatieve metingen van de beeldkwaliteit in deze databases, om inzicht te
verkrijgen in de huidige stand van zaken in dit onderzoeksgebied. Dit hoofdstuk
belicht de voordelen van het gebruik van UHF MRI voor beeldvorming van de
hersenen, met name bij het onderzoeken van de subcortex. Bovendien bespreekt
het de afwegingen die gemaakt moeten worden met betrekking tot parameters
als acquisitietijd, spatiele resolutie en SNR (signaal-ruisverhouding). Verder
benadrukt het hoofdstuk het belang van het openbaar beschikbaar stellen van
data, en wijst het op de keuzes die onderzoekers moeten maken bij het maken van
de afweging tussen kwaliteit en kwantiteit van data.

Hoofdstuk 3 breidt het structurele onderzoek naar de subcortex uit en richt
zich specifiek op de samenstelling van 17 subcorticale structuren en leeftijdsgere-
lateerde veranderingen daarin. In het hoofdstuk worden de gehaltes ijzer en
myeline van deze regio’s vastgesteld, alsmede enkele morfometrische kenmerken.
Het onderzoek belicht de heterogeniteit en complexiteit van deze regio’s. Het
laat ook zien dat zelfs de locatie van gebieden kan veranderen met de leeftijd,
wat belangrijke implicaties heeft voor het creëren van nauwkeurige atlassen van
de subcortex. Dit hoofdstuk benadrukt het belang van het nauwkeurig in kaart
brengen van subcorticale structuren voor het begrip van zowel structurele als func-
tionele eigenschappen, en het toont de rijkdom aan informatie die kan worden
verkregen uit op maat gemaakte MRI-sequenties.

In hoofdstuk 4 duik ik in de bestaande literatuur over responsinhibitie en in-
terferentieresolutie. Dit uitgebreide overzicht dient als basis voor het verdere
onderzoek in dit proefschrift. Terwijl de vorige hoofdstukken zich richtten op
het structurele begrip van de subcortex, verlegt hoofdstuk 4 het perspectief naar
het onderzoeken van hun functies. Om dit te bereiken gebruikte ik een meth-
ode genaamd activation likelihood estimation om de resultaten van eerdere func-
tionele studies met betrekking tot inhibitie te integreren. De resultaten laten een
relatief onvoorspelbare functionele kaart zien, waarbij aanzienlijke variaties in de
betrokken hersengebieden naar voren komen tussen verschillende meta-analyses
en verschillende subtypes van inhibitie. Hoewel sommige vragen met betrekking
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tot inter-individuele gelijkenissen en verschillen worden behandeld, laat het veel
vragen onbeantwoord.

Hoofdstuk 5 vult de inter-individuele resultaten van de meta-analyse uit hoofd-
stuk 4 aan door responsinhibitie en interferentieresolutie op intra-individueel
niveau te onderzoeken. Gebaseerd op de inzichten uit de voorgaande hoofd-
stukken hebben we een functionele studie ontworpen en geoptimaliseerd, waarin
state-of-the-art structurele, functionele en gedragsdata worden verzameld over
zowel responsinhibitie als interferentieresolutie. Deze methodologie maakt het
mogelijk om subtypes van inhibitie te vergelijken op intra-individueel niveau.
De resultaten tonen aan dat responsinhibitie en interferentieresolutie zowel op
het gebied van gedrag, als op het gebied van de onderliggende hersennetwerken,
relatief weinig overlap vertonen. Bovendien werpt het gebruik van een modelge-
baseerde benadering licht op de verschillen in computationele aspecten van deze
twee inhibitie-gerelateerde functies.

Hoofdstuk 6 vormt het hoogtepunt van het onderzoek naar responsinhibitie. De
resultaten van de functionele en gedragsmatige studies worden samengevoegd,
en vier aanvullende, reeds bestaande datasets met betrekking tot de stopsignaal-
taak (SST) worden opnieuw geanalyseerd om licht te werpen op bestaande in-
consistenties binnen het veld. Door gebruik te maken van publiek toegankeli-
jke data worden meerdere datasets gecombineerd, wat het mogelijk maakt een
diepgaande analyse te maken. In tegenstelling tot traditionele modellen van re-
sponsinhibitie, suggereren de bevindingen dat succesvolle inhibitie niet alleen
berust op de gebruikelijke cortico-basale-ganglia verbindingen. In plaats daarvan
toont het onderzoek aan meerdere subcorticale knooppunten actief worden als
responsinhibitie faalt, terwijl eerder werd gedacht dat die gebieden juist actief
worden tijdens succesvolle responsinhibitie. Deze bevindingen, in combinatie
met andere relevante literatuur, benadrukken de noodzaak van verder onderzoek
naar de netwerken die ten grondslag liggen aan succesvolle responsinhibitie in de
menselijke subcortex.

Tot slot wordt in hoofdstuk 7 een uitgebreide samenvatting gegeven van de
belangrijkste bevindingen van dit proefschrift. Tevens worden de bevindingen
geplaatst in de context van de bredere wetenschappelijke literatuur rond inhibitie.
Dit hoofdstuk dient als conclusie en afsluiting, waarin de belangrijke bijdragen
van dit werk aan het domein van subcorticale functies worden benadrukt en
richtingen voor verder onderzoek worden aangegeven.
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